Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780415

RESUMO

Stramenopiles form a clade of diverse eukaryotic organisms, including multicellular algae, the fish and plant pathogenic oomycetes, such as the potato blight Phytophthora, and the human intestinal protozoan Blastocystis. In most eukaryotes, glycolysis is a strictly cytosolic metabolic pathway that converts glucose to pyruvate, resulting in the production of NADH and ATP (Adenosine triphosphate). In contrast, stramenopiles have a branched glycolysis in which the enzymes of the pay-off phase are located in both the cytosol and the mitochondrial matrix. Here, we identify a mitochondrial carrier in Blastocystis that can transport glycolytic intermediates, such as dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, across the mitochondrial inner membrane, linking the cytosolic and mitochondrial branches of glycolysis. Comparative analyses with the phylogenetically related human mitochondrial oxoglutarate carrier (SLC25A11) and dicarboxylate carrier (SLC25A10) show that the glycolytic intermediate carrier has lost its ability to transport the canonical substrates malate and oxoglutarate. Blastocystis lacks several key components of oxidative phosphorylation required for the generation of mitochondrial ATP, such as complexes III and IV, ATP synthase, and ADP/ATP carriers. The presence of the glycolytic pay-off phase in the mitochondrial matrix generates ATP, which powers energy-requiring processes, such as macromolecular synthesis, as well as NADH, used by mitochondrial complex I to generate a proton motive force to drive the import of proteins and molecules. Given its unique substrate specificity and central role in carbon and energy metabolism, the carrier for glycolytic intermediates identified here represents a specific drug and pesticide target against stramenopile pathogens, which are of great economic importance.


All living organisms breakdown food molecules to generate energy for processes, such as growing, reproducing and movement. The series of chemical reactions that breakdown sugars into smaller molecules ­ known as glycolysis ­ is so important that it occurs in all life forms, from bacteria to humans. In higher organisms, such as fungi and animals, these reactions take place in the cytosol, the space surrounding the cell's various compartments. A transport protein then shuttles the end-product of glycolysis ­ pyruvate ­ into specialised compartments, known as the mitochondria, where most energy is produced. However, recently it was discovered that a group of living organisms, called the stramenopiles, have a branched glycolysis in which the enzymes involved in the second half of this process are located in both the cytosol and mitochondrial matrix. But it was not known how the intermediate molecules produced after the first half of glycolysis enter the mitochondria. To answer this question, Pyrihová et al. searched for transport protein(s) that could link the two halves of the glycolysis pathway. Computational analyses, comparing the genetic sequences of many transport proteins from several different species, revealed a new group found only in stramenopiles. Pyrihová et al. then used microscopy to visualise these new transport proteins ­ called GIC-1 and GIC-2 ­ in the parasite Blastocystis, which infects the human gut, and observed that they localise to mitochondria. Further biochemical experiments showed that GIC-1 and GIC-2 can physically bind these intermediate molecules, but only GIC-2 can transport them across membranes. Taken together, these observations suggest that GIC-2 links the two halves of glycolysis in Blastocystis. Further analyses could reveal corresponding transport proteins in other stramenopiles, many of which have devastating effects on agriculture, such as Phytophthora, which causes potato blight, or Saprolegnia, which causes skin infections in farmed salmon. Since human cells do not have equivalent transporters, they could be new drug targets not only for Blastocystis, but for these harmful pathogens as well.


Assuntos
Blastocystis , Citosol , Glicólise , Mitocôndrias , Blastocystis/metabolismo , Blastocystis/genética , Humanos , Mitocôndrias/metabolismo , Citosol/metabolismo , Transporte Biológico , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética
2.
PLoS One ; 18(12): e0295058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127919

RESUMO

The nitrate (NO3-) reducing bacteria resident in the oral cavity have been implicated as key mediators of nitric oxide (NO) homeostasis and human health. NO3--reducing oral bacteria reduce inorganic dietary NO3- to nitrite (NO2-) via the NO3--NO2--NO pathway. Studies of oral NO3--reducing bacteria have typically sampled from either the tongue surface or saliva. The aim of this study was to assess whether other areas in the mouth could contain a physiologically relevant abundance of NO3- reducing bacteria, which may be important for sampling in clinical studies. The bacterial composition of seven oral sample types from 300 individuals were compared using a meta-analysis of the Human Microbiome Project data. This analysis revealed significant differences in the proportions of 20 well-established oral bacteria and highly abundant NO3--reducing bacteria across each oral site. The genera included Actinomyces, Brevibacillus, Campylobacter, Capnocytophaga, Corynebacterium, Eikenella, Fusobacterium, Granulicatella, Haemophilus, Leptotrichia, Microbacterium, Neisseria, Porphyromonas, Prevotella, Propionibacterium, Rothia, Selenomonas, Staphylococcus, Streptococcus and Veillonella. The highest proportion of NO3--reducing bacteria was observed in saliva, where eight of the bacterial genera were found in higher proportion than on the tongue dorsum, whilst the lowest proportions were found in the hard oral surfaces. Saliva also demonstrated higher intra-individual variability and bacterial diversity. This study provides new information on where samples should be taken in the oral cavity to assess the abundance of NO3--reducing bacteria. Taking saliva samples may benefit physiological studies, as saliva contained the highest abundance of NO3- reducing bacteria and is less invasive than other sampling methods. These results inform future studies coupling oral NO3--reducing bacteria research with physiological outcomes affecting human health.


Assuntos
Microbiota , Nitratos , Humanos , Nitratos/metabolismo , Dióxido de Nitrogênio , Boca/microbiologia , Bactérias , Saliva/metabolismo , Streptococcus
3.
Curr Biol ; 33(12): 2449-2464.e8, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267944

RESUMO

Blastocystis is the most prevalent microbial eukaryote in the human and animal gut, yet its role as commensal or parasite is still under debate. Blastocystis has clearly undergone evolutionary adaptation to the gut environment and possesses minimal cellular compartmentalization, reduced anaerobic mitochondria, no flagella, and no reported peroxisomes. To address this poorly understood evolutionary transition, we have taken a multi-disciplinary approach to characterize Proteromonas lacertae, the closest canonical stramenopile relative of Blastocystis. Genomic data reveal an abundance of unique genes in P. lacertae but also reductive evolution of the genomic complement in Blastocystis. Comparative genomic analysis sheds light on flagellar evolution, including 37 new candidate components implicated with mastigonemes, the stramenopile morphological hallmark. The P. lacertae membrane-trafficking system (MTS) complement is only slightly more canonical than that of Blastocystis, but notably, we identified that both organisms encode the complete enigmatic endocytic TSET complex, a first for the entire stramenopile lineage. Investigation also details the modulation of mitochondrial composition and metabolism in both P. lacertae and Blastocystis. Unexpectedly, we identify in P. lacertae the most reduced peroxisome-derived organelle reported to date, which leads us to speculate on a mechanism of constraint guiding the dynamics of peroxisome-mitochondrion reductive evolution on the path to anaerobiosis. Overall, these analyses provide a launching point to investigate organellar evolution and reveal in detail the evolutionary path that Blastocystis has taken from a canonical flagellated protist to the hyper-divergent and hyper-prevalent animal and human gut microbe.


Assuntos
Blastocystis , Microbioma Gastrointestinal , Animais , Humanos , Blastocystis/genética , Microbioma Gastrointestinal/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Organelas/metabolismo , Eucariotos
4.
J Eukaryot Microbiol ; 70(2): e12949, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36168968

RESUMO

Despite the species' wide distribution, studies of the genetic diversity within Entamoeba coli and Entamoeba hartmanni remain limited. In the present study, we provide further insight into the genetic diversity of both species based on analysis of partial nuclear small subunit ribosomal DNA sequences generated from human fecal DNAs from samples collected in Africa, South America, and Europe. Reinforcing the previous recognition that E. coli is a species complex, our data confirm the existence of the two subtypes, ST1 and ST2, previously identified plus, potentially, a new subtype, ST3. While ST1 appears to be genetically quite homogenous, ST2 shows a substantial degree of intrasubtype diversity. ST2 was more common in samples collected outside Europe, whereas ST1 showed no geographical restriction. The potentially novel subtype is represented to date exclusively by sequences from South American and African samples. In contrast to previous reports, our new data also indicate substantial variation in E. hartmanni that could also support the establishment of subtypes within this species. Here, however, no links were identified between subtype and geographical origin.


Assuntos
Blastocystis , Entamoeba , Humanos , Entamoeba/genética , Escherichia coli , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , DNA Ribossômico/genética , Fezes , Filogenia , Variação Genética , Blastocystis/genética
5.
Microorganisms ; 10(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35208781

RESUMO

Blastocystis is a unicellular eukaryote found in the gastrointestinal tract of both human and other animal hosts. The clinical significance of colonic Blastocystis colonization remains obscure. In this study, we used metabarcoding and bioinformatics analyses to identify differences in stool microbiota diversity between Blastocystis-positive and Blastocystis-negative individuals (n = 1285). Alpha diversity was significantly higher in Blastocystis carriers. At phylum level, Firmicutes and Bacteroidetes were enriched in carriers, while Proteobacteria were enriched in non-carriers. The genera Prevotella, Faecalibacterium, Flavonifracter, Clostridium, Succinivibrio, and Oscillibacter were enriched in carriers, whereas Escherichia, Bacteroides, Klebsiella, and Pseudomonas were enriched in non-carriers. No difference in beta diversity was observed. Individuals with Blastocystis-positive stools appear to have gut microbiomes associated with eubiosis unlike those with Blastocystis-negative stools, whose gut microbiomes are similar to those associated with dysbiosis. The role of Blastocystis as an indicator organism and potential modulator of the gut microbiota warrants further scrutiny.

6.
BMC Biol ; 19(1): 142, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294116

RESUMO

BACKGROUND: The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS: Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS: In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.


Assuntos
Naegleria fowleri , Animais , Modelos Animais de Doenças , Genômica , Camundongos , Naegleria fowleri/genética , Transcriptoma , Trogocitose
7.
Genome Biol Evol ; 13(6)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33892498

RESUMO

The identification of the asgard archaea has fueled speculations regarding the nature of the archaeal host in eukaryogenesis and its level of complexity prior to endosymbiosis. Here, we analyzed the coding capacity of 150 eukaryotes, 1,000 bacteria, and 226 archaea, including the only cultured member of the asgard archaea. Clustering methods that consistently recover endosymbiotic contributions to eukaryotic genomes recover an asgard archaeal-unique contribution of a mere 0.3% to protein families present in the last eukaryotic common ancestor, while simultaneously suggesting that this group's diversity rivals that of all other archaea combined. The number of homologs shared exclusively between asgard archaea and eukaryotes is only 27 on average. This tiny asgard archaeal-unique contribution to the root of eukaryotic protein families questions claims that archaea evolved complexity prior to eukaryogenesis. Genomic and cellular complexity remains a eukaryote-specific feature and is best understood as the archaeal host's solution to housing an endosymbiont.


Assuntos
Archaea/genética , Bactérias/genética , Eucariotos/genética , Família Multigênica
8.
Redox Biol ; 41: 101933, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721836

RESUMO

Many oral bacteria reduce inorganic nitrate, a natural part of a vegetable-rich diet, into nitrite that acts as a precursor to nitric oxide, a regulator of vascular tone and neurotransmission. Aging is hallmarked by reduced nitric oxide production with associated detriments to cardiovascular and cognitive function. This study applied a systems-level bacterial co-occurrence network analysis across 10-day dietary nitrate and placebo interventions to test the stability of relationships between physiological and cognitive traits and clusters of co-occurring oral bacteria in older people. Relative abundances of Proteobacteria increased, while Bacteroidetes, Firmicutes and Fusobacteria decreased after nitrate supplementation. Two distinct microbiome modules of co-occurring bacteria, that were sensitive to nitrate supplementation, showed stable relationships with cardiovascular (Rothia-Streptococcus) and cognitive (Neisseria-Haemophilus) indices of health across both dietary conditions. A microbiome module (Prevotella-Veillonella) that has been associated with pro-inflammatory metabolism was diminished after nitrate supplementation, including a decrease in relative abundance of pathogenic Clostridium difficile. These nitrate-sensitive oral microbiome modules are proposed as potential pre- and probiotic targets to ameliorate age-induced impairments in cardiovascular and cognitive health.


Assuntos
Microbiota , Nitratos , Idoso , Cognição , Humanos , Óxido Nítrico , Nitritos , Óxidos de Nitrogênio
9.
J Invertebr Pathol ; 186: 107387, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32330478

RESUMO

With rapid increases in the global shrimp aquaculture sector, a focus on animal health during production becomes ever more important. Animal productivity is intimately linked to health, and the gut microbiome is becoming increasingly recognised as an important driver of cultivation success. The microbes that colonise the gut, commonly referred to as the gut microbiota or the gut microbiome, interact with their host and contribute to a number of key host processes, including digestion and immunity. Gut microbiome manipulation therefore represents an attractive proposition for aquaculture and has been suggested as a possible alternative to the use of broad-spectrum antibiotics in the management of disease, which is a major limitation of growth in this sector. Microbiota supplementation has also demonstrated positive effects on growth and survival of several different commercial species, including shrimp. Development of appropriate gut supplements, however, requires prior knowledge of the host microbiome. Little is known about the gut microbiota of the aquatic invertebrates, but penaeid shrimp are perhaps more studied than most. Here, we review current knowledge of information reported on the shrimp gut microbiota, highlighting the most frequently observed taxa and emphasizing the dominance of Proteobacteria within this community. We discuss involvement of the microbiome in the regulation of shrimp health and disease and describe how the gut microbiota changes with the introduction of several economically important shrimp pathogens. Finally, we explore evidence of microbiome supplementation and consider its role in the future of penaeid shrimp production.


Assuntos
Ração Animal/análise , Suplementos Nutricionais , Microbioma Gastrointestinal , Penaeidae/microbiologia , Proteobactérias/química , Animais , Aquicultura , Dieta
10.
Front Microbiol ; 11: 584893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193229

RESUMO

Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.

11.
ISME J ; 14(2): 531-543, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31676854

RESUMO

Microbial communities within the gut can markedly impact host health and fitness. To what extent environmental influences affect the differential distribution of these microbial populations may therefore significantly impact the successful farming of the host. Using a sea-based container culture (SBCC) system for the on-growing of European lobster (Homarus gammarus), we tracked the bacterial gut microbiota over a 1-year period. We compared these communities with lobsters of the same cohort, retained in a land-based culture (LBC) system to assess the effects of the culture environment on gut bacterial assemblage and describe the phylogenetic structure of the microbiota to compare deterministic and stochastic assembly across both environments. Bacterial gut communities from SBCCs were generally more phylogenetically clustered, and therefore deterministically assembled, compared to those reared in land-based systems. Lobsters in SBCCs displayed significantly more species-rich and species-diverse gut microbiota compared to those retained in LBC. A reduction in the bacterial diversity of the gut was also associated with higher infection prevalence of the enteric viral pathogen Homarus gammarus nudivirus (HgNV). SBCCs may therefore benefit the overall health of the host by promoting the assembly of a more diverse gut bacterial community and reducing the susceptibility to disease.


Assuntos
Microbioma Gastrointestinal/genética , Nephropidae/microbiologia , Nephropidae/virologia , Nudiviridae/isolamento & purificação , Animais , Bactérias/classificação , Suscetibilidade a Doenças/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Interações Microbianas , Filogenia , Alimentos Marinhos/microbiologia , Alimentos Marinhos/virologia , Viroses
12.
Commun Biol ; 2: 429, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799431

RESUMO

Carboxylic acid reductases (CARs) are biocatalysts of industrial importance. Their properties, especially their poor stability, render them sub-optimal for use in a bioindustrial pipeline. Here, we employed ancestral sequence reconstruction (ASR) - a burgeoning engineering tool that can identify stabilizing but enzymatically neutral mutations throughout a protein. We used a three-algorithm approach to reconstruct functional ancestors of the Mycobacterial and Nocardial CAR1 orthologues. Ancestral CARs (AncCARs) were confirmed to be CAR enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied extant CARs, AncCARs had a Tm up to 35 °C higher, with half-lives up to nine times longer than the greatest previously observed. Using ancestral reconstruction we have expanded the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the high temperature biosynthesis of aldehydes to drive new applications in biocatalysis.


Assuntos
Oxirredutases/química , Oxirredutases/genética , Termodinâmica , Ativação Enzimática , Estabilidade Enzimática , Evolução Molecular , Cinética , Modelos Moleculares , Oxirredutases/classificação , Filogenia , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
13.
Sci Rep ; 9(1): 10086, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300678

RESUMO

Viral diseases of crustaceans are increasingly recognised as challenges to shellfish farms and fisheries. Here we describe the first naturally-occurring virus reported in any clawed lobster species. Hypertrophied nuclei with emarginated chromatin, characteristic histopathological lesions of DNA virus infection, were observed within the hepatopancreatic epithelial cells of juvenile European lobsters (Homarus gammarus). Transmission electron microscopy revealed infection with a bacilliform virus containing a rod shaped nucleocapsid enveloped in an elliptical membrane. Assembly of PCR-free shotgun metagenomic sequencing produced a circular genome of 107,063 bp containing 97 open reading frames, the majority of which share sequence similarity with a virus infecting the black tiger shrimp: Penaeus monodon nudivirus (PmNV). Multiple phylogenetic analyses confirm the new virus to be a novel member of the Nudiviridae: Homarus gammarus nudivirus (HgNV). Evidence of occlusion body formation, characteristic of PmNV and its closest relatives, was not observed, questioning the horizontal transmission strategy of HgNV outside of the host. We discuss the potential impacts of HgNV on juvenile lobster growth and mortality and present HgNV-specific primers to serve as a diagnostic tool for monitoring the virus in wild and farmed lobster stocks.


Assuntos
Doenças dos Peixes/virologia , Nephropidae/virologia , Nudiviridae/classificação , Nudiviridae/genética , Animais , Genoma Viral/genética , Hepatopâncreas/virologia , Microscopia Eletrônica de Transmissão , Nudiviridae/isolamento & purificação , Penaeidae/virologia , Filogenia , Frutos do Mar/virologia
14.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 647-659, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282474

RESUMO

Succinyl-CoA synthetase (SCS) catalyzes the only step of the tricarboxylic acid cycle that leads to substrate-level phosphorylation. Some forms of SCS are specific for ADP/ATP or for GDP/GTP, while others can bind all of these nucleotides, generally with different affinities. The theory of `gatekeeper' residues has been proposed to explain the nucleotide-specificity. Gatekeeper residues lie outside the binding site and create specific electrostatic interactions with incoming nucleotides to determine whether the nucleotides can enter the binding site. To test this theory, the crystal structure of the nucleotide-binding domain in complex with Mg2+-ADP was determined, as well as the structures of four proteins with single mutations, K46ßE, K114ßD, V113ßL and L227ßF, and one with two mutations, K46ßE/K114ßD. The crystal structures show that the enzyme is specific for ADP/ATP because of interactions between the nucleotide and the binding site. Nucleotide-specificity is provided by hydrogen-bonding interactions between the adenine base and Gln20ß, Gly111ß and Val113ß. The O atom of the side chain of Gln20ß interacts with N6 of ADP, while the side-chain N atom interacts with the carbonyl O atom of Gly111ß. It is the different conformations of the backbone at Gln20ß, of the side chain of Gln20ß and of the linker that make the enzyme ATP-specific. This linker connects the two subdomains of the ATP-grasp fold and interacts differently with adenine and guanine bases. The mutant proteins have similar conformations, although the L227ßF mutant shows structural changes that disrupt the binding site for the magnesium ion. Although the K46ßE/K114ßD double mutant of Blastocystis hominis SCS binds GTP better than ATP according to kinetic assays, only the complex with Mg2+-ADP was obtained.


Assuntos
Trifosfato de Adenosina/metabolismo , Blastocystis hominis/enzimologia , Modelos Moleculares , Succinato-CoA Ligases/química , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Sítios de Ligação , Cristalografia por Raios X/métodos , Escherichia coli/genética , Fluorometria/métodos , Ligação de Hidrogênio , Cinética , Mutação , Ligação Proteica , Domínios Proteicos
15.
Nutrients ; 11(5)2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085979

RESUMO

Limited evidence suggests that the consumption of polyphenols may improve glycaemic control and insulin sensitivity. The gut microbiome produces phenolic metabolites and increases their bioavailability. A handful of studies have suggested that polyphenol consumption alters gut microbiome composition. There are no data available investigating such effects in polyphenol-rich Montmorency cherry (MC) supplementation. A total of 28 participants (aged 40-60 years) were randomized to receive daily MC or glucose and energy-matched placebo supplementation for 4 wk. Faecal and blood samples were obtained at baseline and at 4 wk. There was no clear effect of supplementation on glucose handling (Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Gutt indices), although the Matsuda index decreased significantly in the MC group post-supplementation, reflecting an increase in serum insulin concentration. Contrastingly, placebo, but not MC supplementation induced a 6% increase in the Oral Glucose Insulin Sensitivity (OGIS) estimate of glucose clearance. Serum IL-6 and C reactive protein were unaltered by either supplement. The faecal bacterial microbiome was sequenced; species richness and diversity were unchanged by MC or placebo and no significant correlation existed between changes in Bacteroides and Faecalibacterium abundance and any index of insulin sensitivity. Therefore, 4 weeks of MC supplementation did not alter the gut microbiome, glycaemic control or systemic concentrations of IL-6 and CRP in a middle-aged population.


Assuntos
Glicemia/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Prunus avium/química , Adulto , Biomarcadores , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Fezes/microbiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/administração & dosagem , Glucose/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Extratos Vegetais/química
16.
Parasitology ; 146(8): 1022-1029, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30975238

RESUMO

Aphanomyces astaci causes crayfish plague, which is a devastating disease of European freshwater crayfish. The likely first introduction of A. astaci into Europe was in the mid-19th century in Italy, presumably with the introduction of North American crayfish. These crayfish can carry A. astaci in their cuticle as a benign infection. Aphanomyces astaci rapidly spread across Europe causing the decline of the highly susceptible indigenous crayfish species. Random amplified polymorphic DNA-PCR analysis of A. astaci pure cultures characterized five genotype groups (A, B, C, D and E). Current A. astaci genotyping techniques (microsatellites and genotype-specific regions, both targeting nuclear DNA) can be applied directly to DNA extracted from infected cuticles but require high infection levels. Therefore, they are not suitable for genotyping benign infections in North American crayfish (carriers). In the present study, we combine bioinformatics and molecular biology techniques to develop A. astaci genotyping molecular markers that target the mitochondrial DNA, increasing the sensitivity of the genotyping tools. The assays were validated on DNA extracts of A. astaci pure cultures, crayfish tissue extractions from crayfish plague outbreaks and tissue extractions from North American carriers. We demonstrate the presence of A. astaci genotype groups A and B in UK waters.


Assuntos
Aphanomyces/isolamento & purificação , Astacoidea/microbiologia , DNA Fúngico/análise , DNA Mitocondrial/análise , Genótipo , Técnicas de Genotipagem/métodos , Animais , Aphanomyces/genética
17.
Artigo em Inglês | MEDLINE | ID: mdl-30406045

RESUMO

Blastocystis is the most common eukaryotic microbe in the human gut. It is linked to irritable bowel syndrome (IBS), but its role in disease has been contested considering its widespread nature. This organism is well-adapted to its anoxic niche and lacks typical eukaryotic features, such as a cytochrome-driven mitochondrial electron transport. Although generally considered a strict or obligate anaerobe, its genome encodes an alternative oxidase. Alternative oxidases are energetically wasteful enzymes as they are non-protonmotive and energy is liberated in heat, but they are considered to be involved in oxidative stress protective mechanisms. Our results demonstrate that the Blastocystis cells themselves respire oxygen via this alternative oxidase thereby casting doubt on its strict anaerobic nature. Inhibition experiments using alternative oxidase and Complex II specific inhibitors clearly demonstrate their role in cellular respiration. We postulate that the alternative oxidase in Blastocystis is used to buffer transient oxygen fluctuations in the gut and that it likely is a common colonizer of the human gut and not causally involved in IBS. Additionally the alternative oxidase could act as a protective mechanism in a dysbiotic gut and thereby explain the absence of Blastocystis in established IBS environments.


Assuntos
Blastocystis/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Aerobiose , Anaerobiose , Blastocystis/crescimento & desenvolvimento , Infecções por Blastocystis/parasitologia , Trato Gastrointestinal/parasitologia , Humanos
18.
Genome Biol Evol ; 10(9): 2310-2325, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30060189

RESUMO

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome. This endosymbiotic gene transfer resulted in the loss of many genes, both from the bacterial symbiont as well the archaeal host. Loss of genes encoding redundant functions resulted in a replacement of the bulk of the host's metabolism for those originating from the endosymbiont. Glycolysis is one such metabolic pathway in which the original archaeal enzymes have been replaced by bacterial enzymes from the endosymbiont. Glycolysis is a major catabolic pathway that provides cellular energy from the breakdown of glucose. The glycolytic pathway of eukaryotes appears to be bacterial in origin, and in well-studied model eukaryotes it takes place in the cytosol. In contrast, here we demonstrate that the latter stages of glycolysis take place in the mitochondria of stramenopiles, a diverse and ecologically important lineage of eukaryotes. Although our work is based on a limited sample of stramenopiles, it leaves open the possibility that the mitochondrial targeting of glycolytic enzymes in stramenopiles might represent the ancestral state for eukaryotes.


Assuntos
Blastocystis/metabolismo , Diatomáceas/metabolismo , Glicólise , Mitocôndrias/metabolismo , Evolução Biológica , Blastocystis/citologia , Blastocystis/enzimologia , Blastocystis/genética , Diatomáceas/citologia , Diatomáceas/enzimologia , Diatomáceas/genética , Metabolismo Energético , Genoma Mitocondrial , Mitocôndrias/genética , Simbiose , Transformação Genética
19.
J Invertebr Pathol ; 156: 6-13, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29953875

RESUMO

The oomycete Aphanomyces astaci causes crayfish plague, the most important disease of European freshwater crayfish species. Presumably introduced into Europe 150 years ago with the import of North American crayfish, A. astaci is highly pathogenic to European crayfish species. Five genotypes (A, B, C, D, and E) have been defined based on random amplified polymorphic DNA analysis (RAPD-PCR) from A. astaci pure cultures. The distinction of genotypes is an essential tool to conduct molecular epidemiological studies on crayfish plague and it has been used to clarify and better understand the history and spread of this disease in Europe. Whereas RAPD-PCR requires DNA from pure culture isolates, the development of genotyping tools that can be applied to DNA extracted from clinical samples allows a much wider application of genotyping studies, including revisiting historic samples. In this study, we present a new approach that adds to currently available methods for genotyping A. astaci strains directly from clinical crayfish samples. Whole-genome sequencing of A. astaci strains representing all currently known genotypes was employed, genomic regions unique to the respective genotype identified, and a PCR-based genotyping assay designed, which focuses on the presence/absence of PCR product after amplification with the genotype-specific primers. Our diagnostic methodology was tested using DNA extracts from pure A. astaci cultures, other Aphanomyces species and additional oomycetes, samples from a recent Italian crayfish plague outbreak and additional historical samples available in the Centre for Environment, Fisheries and Aquaculture Science laboratory. The new markers were reliable for pure culture and clinical samples from a recent outbreak and successfully discriminated genotype A, B, D, and E. The marker for genotype C required an additional sequencing step of the generated PCR product to confirm genotype.


Assuntos
Aphanomyces/genética , Astacoidea/parasitologia , Técnicas de Genotipagem/métodos , Infecções/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Reação em Cadeia da Polimerase/métodos
20.
Free Radic Biol Med ; 124: 21-30, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29807159

RESUMO

Imbalances in the oral microbial community have been associated with reduced cardiovascular and metabolic health. A possible mechanism linking the oral microbiota to health is the nitrate (NO3-)-nitrite (NO2-)-nitric oxide (NO) pathway, which relies on oral bacteria to reduce NO3- to NO2-. NO (generated from both NO2- and L-arginine) regulates vascular endothelial function and therefore blood pressure (BP). By sequencing bacterial 16S rRNA genes we examined the relationships between the oral microbiome and physiological indices of NO bioavailability and possible changes in these variables following 10 days of NO3- (12 mmol/d) and placebo supplementation in young (18-22 yrs) and old (70-79 yrs) normotensive humans (n = 18). NO3- supplementation altered the salivary microbiome compared to placebo by increasing the relative abundance of Proteobacteria (+225%) and decreasing the relative abundance of Bacteroidetes (-46%; P < 0.05). After NO3-supplementation the relative abundances of Rothia (+127%) and Neisseria (+351%) were greater, and Prevotella (-60%) and Veillonella (-65%) were lower than in the placebo condition (all P < 0.05). NO3- supplementation increased plasma concentration of NO2- and reduced systemic blood pressure in old (70-79 yrs), but not young (18-22 yrs), participants. High abundances of Rothia and Neisseria and low abundances of Prevotella and Veillonella were correlated with greater increases in plasma [NO2-] in response to NO3- supplementation. The current findings indicate that the oral microbiome is malleable to change with increased dietary intake of inorganic NO3-, and that diet-induced changes in the oral microbial community are related to indices of NO homeostasis and vascular health in vivo.


Assuntos
Pressão Sanguínea , Suplementos Nutricionais , Homeostase , Microbiota , Óxido Nítrico/metabolismo , Saliva/microbiologia , Rigidez Vascular/efeitos dos fármacos , Adolescente , Adulto , Idoso , Bactérias/efeitos dos fármacos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nitratos/metabolismo , Nitritos/metabolismo , RNA Ribossômico 16S , Estudos Retrospectivos , Saliva/efeitos dos fármacos , Saliva/metabolismo , Rigidez Vascular/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...