Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 631-632: 115-129, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29524889

RESUMO

The fate and environmental effects of phosphorus (P) in natural waters depend on its chemical forms. The particulate P (PP) concentration is dominant over the dissolved P concentration in agriculture-dominated headwaters in the Netherlands. Routine water quality monitoring programmes do not include the chemical fractionation of PP. To quantify the chemical forms of PP under various conditions in six agriculture-dominated lowland catchments in the Netherlands, a sequential chemical extraction method was applied to suspended particulate matter (SPM) samples collected by centrifugation or filtration. Centrifuge samples had lower values for the sum of the PP fractions compared with the filtration samples due to lower contents from PP fractions other than the Fe-P pool. With an average value of 8.8mgg-1, internationally high P contents of the SPM were found. Ferric iron-bound P was the most important PP fraction in SPM samples (38-95%; median 74%), followed by organic P (2-38%; median 15%). Exchangeable P ranged from 0.2 to 27%, with a median of 4.4%, Ca-P ranged from 0.1 to 11% with a median of 3.9% and detrital P was present in only a small fraction (0-6%; median 1.1%). Ferric iron-bound P was the dominant PP pool throughout the entire range of watercourses (from headwater ditches to catchment outlets) and in samples taken during winter months as well as those taken during summer months. Furthermore, the PP fraction distribution did not change markedly when flow conditions were altered from low to high discharge. The dominance of the Fe-P pool denotes the presence of Fe(III) precipitates in SPM that originate from exfiltration of anoxic Fe-bearing groundwater. These Fe(III) precipitates are a major fraction of the total SPM concentration (4 to 67% as Fe(OH)3; median 18%). Although not measured directly, our results suggest that formation of authigenic Fe(III) precipitates causes a rapid transformation of dissolved P in groundwater to PP in surface water. We advise including sequential chemical extraction of SPM monitoring programmes because the composition of particles is critical for P bioavailability, which is a key driving factor for eutrophication.

2.
Water Air Soil Pollut ; 228(3): 107, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28260820

RESUMO

This study investigates the impact of future climate change on heavy metal (i.e., Cd and Zn) transport from soils to surface waters in a contaminated lowland catchment. The WALRUS hydrological model is employed in a semi-distributed manner to simulate current and future hydrological fluxes in the Dommel catchment in the Netherlands. The model is forced with climate change projections and the simulated fluxes are used as input to a metal transport model that simulates heavy metal concentrations and loads in quickflow and baseflow pathways. Metal transport is simulated under baseline climate ("2000-2010") and future climate ("2090-2099") conditions including scenarios for no climate change and climate change. The outcomes show an increase in Cd and Zn loads and the mean flux-weighted Cd and Zn concentrations in the discharged runoff, which is attributed to breakthrough of heavy metals from the soil system. Due to climate change, runoff enhances and leaching is accelerated, resulting in enhanced Cd and Zn loads. Mean flux-weighted concentrations in the discharged runoff increase during early summer and decrease during late summer and early autumn under the most extreme scenario of climate change. The results of this study provide improved understanding on the processes responsible for future changes in heavy metal contamination in lowland catchments.

3.
Water Res ; 98: 326-33, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27110889

RESUMO

Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 µm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 µm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals.


Assuntos
Ferro/química , Rios , Coloides/química , Fosfatos/química , Fósforo/química
4.
J Environ Qual ; 43(3): 859-68, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602815

RESUMO

A spatially distributed model for leaching of Cd from the unsaturated zone was developed for the Belgian-Dutch transnational Kempen region. The model uses as input land-use maps, atmospheric deposition data, and soil data and is part of a larger regional model that simulates transport of Cd in soil, groundwater, and surface water. A new method for deriving deposition from multiple sites was validated using soil data in different wind directions. Leaching was calculated for the period 1890 to 2010 using a reconstruction of metal loads in the region. The model was able to reproduce spatial patterns of concentrations in soil and groundwater and predicted the concentration in shallow groundwater adequately well for the purpose of evaluating management options. For 42% of the data points, measurements and calculations were within the same concentration class. The model was used for forecasting under a reference scenario, an autonomous development scenario including climate change, and a scenario with implementation of remediation measures. The impact of autonomous development (under the most extreme scenario of climatic change) amounted to an increase of 10% in cumulative Cd flux after 100 yr as compared with the reference scenario. The impact of remediation measures was mainly local and is less pronounced (i.e., only 3% change in cumulative flux at the regional scale). The integrated model served as a tool to assist in developing management strategies and prioritization of remediation of the wide-spread heavy metal contamination in the region.

5.
Environ Sci Technol ; 47(18): 10415-22, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23931144

RESUMO

Leaching of nitrate from agricultural land to groundwater and the resulting nitrate pollution are a major environmental problem worldwide. Its impact is often mitigated in aquifers hosting sufficiently reactive reductants that can promote autotrophic denitrification. In the case of pyrite acting as reductant, however, denitrification is associated with the release of sulfate and often also with the mobilization of trace metals (e.g., arsenic). In this study, reactive transport modeling was used to reconstruct, quantify and analyze the dynamics of the dominant biogeochemical processes in a nitrate-polluted pyrite-containing aquifer and its evolution over the last 50 years in response to changing agricultural practices. Model simulations were constrained by measured concentration depth profiles. Measured (3)H/(3)He profiles were used to support the calibration of flow and conservative transport processes, while the comparison of simulated and measured sulfur isotope signatures acted as additional calibration constraint for the reactive processes affecting sulfur cycling. The model illustrates that denitrification largely prevented an elevated discharge of nitrate to surface waters, while sulfate discharges were significantly increased, peaking around 15 years after the maximum nitrogen inputs.


Assuntos
Água Subterrânea/química , Ferro/química , Modelos Teóricos , Nitratos/química , Sulfetos/química , Poluentes Químicos da Água/química , Desnitrificação , Oxirredução , Sulfatos/química , Isótopos de Enxofre , Movimentos da Água
6.
J Contam Hydrol ; 138-139: 113-22, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22863894

RESUMO

Modeling contaminant transport of diffusive contaminants is generally difficult, as most contaminants are located in the top soil where soil properties will vary strongly with depth and often a strong gradient in contaminant concentrations exists. When groundwater periodically penetrates the contaminated layers, stationary models (like most 3D models) cannot adequately describe contaminant transport. Therefore we have combined a hydrological instationary model using a 1D distributed column approach with a simple geochemical model to describe contaminant transport in the soil. Special to this model is that it includes lateral drainage from the soil column to different types of surface waters, which makes it possible to calculate surface water emissions especially for fluctuating groundwater tables. To test this model approach, we used it to quantify surface water emissions from soils in a catchment in the Kempen area which has been diffusively contaminated with Cd and Zn by zinc smelters. We ran the model for the period 1880-2000, starting with an uncontaminated soil in 1880. The model could describe both water discharge, surface water concentrations and current soil contents of Cd and Zn well. Further the model calculations showed that a stationary approach would underestimate leaching to surface waters considerably.


Assuntos
Cádmio/análise , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Zinco/análise , Agricultura , Difusão , Monitoramento Ambiental , Modelos Químicos , Países Baixos , Fatores de Tempo , Qualidade da Água
7.
J Contam Hydrol ; 96(1-4): 48-68, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18031865

RESUMO

Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic and predictive modelling were performed, using a mass balance approach for three different catchments in the vicinity of three smelters. The catchments differ in their hydrology and geochemistry. The historic modelling results indicate that leaching to groundwater is spatially very heterogeneous due to variation in soil characteristics, in particular soil pH. In the saturated zone, cadmium is becoming strongly retarded due to strong sorption at neutral pH, even though the reactivity of the sandy sediments is low. A comparison between two datasets (from 1990 to 2002) on shallow groundwater and modelled concentrations provided a useful verification on the level of statistics of "homogeneous areas" (areas with comparable land use, soil type and geohydrological situation) instead of comparison at individual locations. While at individual locations observations and the model varies up to two orders of magnitude, for homogeneous areas, medians and ranges of measured concentrations and the model results are similar. A sensitivity analysis on metal input loads, groundwater composition and sediment geochemistry reveals that the best available information scenario based on the median value of input parameters for the model predicts the range in observed concentrations very well. However, the model results are sensitive to the sediment contents of the reactive components (organic matter, clay minerals and iron oxides). Uncertainty in metal input loads and groundwater chemistry are of lesser importance. Predictive modelling reveals a remarkable difference in geochemical and hydrological controls on subsurface metal transport at catchment-scale. Whether the surface water load will peak within a few decades or continue to increase until after 2050 depends on the dominant land use functions in the areas, their hydrology and geochemical build-up.


Assuntos
Água Doce/química , Resíduos Industriais/análise , Metais Pesados/análise , Metais Pesados/química , Movimentos da Água , Poluentes Químicos da Água/análise , Simulação por Computador , Países Baixos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...