Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chemistry ; 13(34): 9561-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17847152

RESUMO

Activity experiments using GC analysis of reactor effluent have been combined with in situ IR spectroscopy to elucidate the reaction steps in the destructive adsorption of CHCl3, CH2Cl2, and CH3Cl over LaOCl. The IR results show that during reaction, LaOCl is covered with carbonate, formate, and methoxy groups. The relative amount of each of these surface intermediates depends on the Cl/H ratio of the reactant. The decomposition of the surface species leads to formation of the reaction products, and is influenced by the temperature and the relative amount of Cl present on the surface. The GC results show that the activity for the destructive adsorption of H-containing chlorinated C1 compounds decreases with increasing hydrogen content of the reactant. The acquired insight into the mechanism of destructive adsorption is crucial to the design of new catalyst materials for the efficient conversion of chlorinated hydrocarbons into nonhazardous products or reusable chemicals.

3.
J Phys Chem B ; 109(50): 23993-4001, 2005 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-16375389

RESUMO

The relative activities of a low-surface crystalline and high-surface amorphous LaOCl, further denoted as S1 and S2, have been compared for the destructive adsorption of CCl4. It was found that the intrinsic activity of S2 is higher than that of S1. Both samples were characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2-physisorption, and Raman and infrared (IR) spectroscopy. IR was used in combination with CO2, CO, and methanol as probe molecules. The CO2 experiments showed that different carbonate species are formed on both materials. For S1, a high surface concentration of bidentate carbonate species and a lower concentration of monodentate carbonate were observed. In the case of S2, bulk carbonates were present together with bridged carbonates. CO adsorption shows that S2 and S1 have very similar Lewis acid sites. However, methanol adsorption experiments showed that S2 had a higher number of stronger Lewis acid sites than S1 and that twofold coordinated methoxy species were more strongly bound than threefold coordinated methoxy species. Because of the analogy between methanol dissociation and the removal of the first chlorine atom in the destructive adsorption of CCl4, the sites enabling twofold coordination were likely to be the same Lewis acid sites actively involved in the destructive adsorption of CCl4. La2O3 was less active than the two LaOCl materials, and therefore, the intrinsic activity of the catalyst increases as the strength of the Lewis acid sites increases. S2 contains more chlorine at the surface than S1, which is expressed by the higher number of sites enabling twofold coordination. Moreover, this explains the difference in destructive adsorption capacity for CCl4 that was observed for the samples S1 and S2. Since LaCl3, being the most acidic phase, is not active for the destructive adsorption of CCl4, basic oxygen atoms, however, remain needed to stabilize the reaction intermediate CCl3 as La-O-CCl3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...