Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(7): 1420-1433, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956208

RESUMO

Mismatch repair (MMR)-deficient cancer evolves through the stepwise erosion of coding homopolymers in target genes. Curiously, the MMR genes MutS homolog 6 (MSH6) and MutS homolog 3 (MSH3) also contain coding homopolymers, and these are frequent mutational targets in MMR-deficient cancers. The impact of incremental MMR mutations on MMR-deficient cancer evolution is unknown. Here we show that microsatellite instability modulates DNA repair by toggling hypermutable mononucleotide homopolymer runs in MSH6 and MSH3 through stochastic frameshift switching. Spontaneous mutation and reversion modulate subclonal mutation rate, mutation bias and HLA and neoantigen diversity. Patient-derived organoids corroborate these observations and show that MMR homopolymer sequences drift back into reading frame in the absence of immune selection, suggesting a fitness cost of elevated mutation rates. Combined experimental and simulation studies demonstrate that subclonal immune selection favors incremental MMR mutations. Overall, our data demonstrate that MMR-deficient colorectal cancers fuel intratumor heterogeneity by adapting subclonal mutation rate and diversity to immune selection.


Assuntos
Neoplasias Colorretais , Reparo de Erro de Pareamento de DNA , Instabilidade de Microssatélites , Humanos , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mutação , Proteína 3 Homóloga a MutS/genética , Taxa de Mutação , Mutação da Fase de Leitura/genética
2.
Science ; 384(6697): 785-792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753784

RESUMO

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Biossíntese de Proteínas , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Códon/genética , Leucina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo
3.
Curr Biol ; 31(11): 2334-2346.e9, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33857431

RESUMO

Epithelial tubes are essential components of metazoan organ systems that control the flow of fluids and the exchange of materials between body compartments and the outside environment. The size and shape of the central lumen confer important characteristics to tubular organs and need to be carefully controlled. Here, we identify the small coiled-coil protein BBLN-1 as a regulator of lumen morphology in the C. elegans intestine. Loss of BBLN-1 causes the formation of bubble-shaped invaginations of the apical membrane into the cytoplasm of intestinal cells and abnormal aggregation of the subapical intermediate filament (IF) network. BBLN-1 interacts with IF proteins and localizes to the IF network in an IF-dependent manner. The appearance of invaginations is a result of the abnormal IF aggregation, indicating a direct role for the IF network in maintaining lumen homeostasis. Finally, we identify bublin (BBLN) as the mammalian ortholog of BBLN-1. When expressed in the C. elegans intestine, BBLN recapitulates the localization pattern of BBLN-1 and can compensate for the loss of BBLN-1 in early larvae. In mouse intestinal organoids, BBLN localizes subapically, together with the IF protein keratin 8. Our results therefore may have implications for understanding the role of IFs in regulating epithelial tube morphology in mammals.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Filamentos Intermediários , Filamentos Intermediários , Intestinos , Camundongos
4.
Development ; 146(22)2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31740621

RESUMO

A correct balance between proliferative and asymmetric cell divisions underlies normal development, stem cell maintenance and tissue homeostasis. What determines whether cells undergo symmetric or asymmetric cell division is poorly understood. To gain insight into the mechanisms involved, we studied the stem cell-like seam cells in the Caenorhabditis elegans epidermis. Seam cells go through a reproducible pattern of asymmetric divisions, instructed by divergent canonical Wnt/ß-catenin signaling, and symmetric divisions that increase the seam cell number. Using time-lapse fluorescence microscopy we observed that symmetric cell divisions maintain asymmetric localization of Wnt/ß-catenin pathway components. Our observations, based on lineage-specific knockout and GFP-tagging of endogenous pop-1, support the model that POP-1TCF induces differentiation at a high nuclear level, whereas low nuclear POP-1 promotes seam cell self-renewal. Before symmetric division, the transcriptional regulator RNT-1Runx and cofactor BRO-1CBFß temporarily bypass Wnt/ß-catenin asymmetry by downregulating pop-1 expression. Thereby, RNT-1/BRO-1 appears to render POP-1 below the level required for its repressor function, which converts differentiation into self-renewal. Thus, we found that conserved Runx/CBFß-type stem cell regulators switch asymmetric to proliferative cell division by opposing TCF-related transcriptional repression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Subunidade beta de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Alelos , Animais , Divisão Celular Assimétrica , Sistemas CRISPR-Cas , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Proliferação de Células , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Masculino , Interferência de RNA , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt
5.
PLoS One ; 12(2): e0171600, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28158315

RESUMO

Development, tissue homeostasis and tumor suppression depend critically on the correct regulation of cell division. Central in the cell division process is the decision whether to enter the next cell cycle and commit to going through the S and M phases, or to remain temporarily or permanently arrested. Cell cycle studies in genetic model systems could greatly benefit from visualizing cell cycle commitment in individual cells without the need of fixation. Here, we report the development and characterization of a reporter to monitor cell cycle entry in the nematode C. elegans. This reporter combines the mcm-4 promoter, to reveal Rb/E2F-mediated transcriptional control, and a live-cell sensor for CDK-activity. The CDK sensor was recently developed for use in human cells and consists of a DNA Helicase fragment fused to eGFP. Upon phosphorylation by CDKs, this fusion protein changes in localization from the nucleus to the cytoplasm. The combined regulation of transcription and subcellular localization enabled us to visualize the moment of cell cycle entry in dividing seam cells during C. elegans larval development. This reporter is the first to reflect cell cycle commitment in C. elegans and will help further genetic studies of the mechanisms that underlie cell cycle entry and exit.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/genética , Fosforilação/genética , Fosforilação/fisiologia , Regiões Promotoras Genéticas/genética
6.
Biol Open ; 1(11): 1128-40, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23213393

RESUMO

Proper regulation of the formation and stabilization of epithelial cell-cell adhesion is crucial in embryonic morphogenesis and tissue repair processes. Defects in this process lead to organ malformation and defective epithelial barrier function. A combination of chemical and mechanical cues is used by cells to drive this process. We have investigated the role of the actomyosin cytoskeleton and its connection to cell-cell junction complexes in the formation of an epithelial barrier in MDCK cells. We find that the E-cadherin complex is sufficient to mediate a functional link between cell-cell contacts and the actomyosin cytoskeleton. This link involves the actin binding capacity of α-catenin and the recruitment of the mechanosensitive protein Vinculin to tensile, punctate cell-cell junctions that connect to radial F-actin bundles, which we name Focal Adherens Junctions (FAJ). When cell-cell adhesions mature, these FAJs disappear and linear junctions are formed that do not contain Vinculin. The rapid phase of barrier establishment (as measured by Trans Epithelial Electrical Resistance (TER)) correlates with the presence of FAJs. Moreover, the rate of barrier establishment is delayed when actomyosin contraction is blocked or when Vinculin recruitment to the Cadherin complex is prevented. Enhanced presence of Vinculin increases the rate of barrier formation. We conclude that E-cadherin-based FAJs connect forming cell-cell adhesions to the contractile actomyosin cytoskeleton. These specialized junctions are sites of Cadherin mechanosensing, which, through the recruitment of Vinculin, is a driving force in epithelial barrier formation.

7.
Cell Rep ; 2(2): 407-18, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22884370

RESUMO

Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Linhagem da Célula/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Células-Tronco Neurais/citologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...