Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
NMR Biomed ; : e5195, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845018

RESUMO

The neuronal tricarboxylic acid and glutamate/glutamine (Glu/Gln) cycles play important roles in brain function. These processes can be measured in vivo using dynamic 1H-[13C] MRS during administration of 13C-labeled glucose. Proton-observed carbon-edited (POCE) MRS enhances the signal-to-noise ratio (SNR) compared with direct 13C-MRS. Ultra-high field further boosts the SNR and increases spectral dispersion; however, even at 7 T, Glu and Gln 1H-resonances may overlap. Further gain can be obtained with selective POCE (selPOCE). Our aim was to create a setup for indirect dynamic 1H-[13C] MRS in the human brain at 7 T. A home-built non-shielded transmit-receive 13C-birdcage head coil with eight transmit-receive 1H-dipole antennas was used together with a 32-channel 1H-receive array. Electromagnetic simulations were carried out to ensure that acquisitions remained within local and global head SAR limits. POCE-MRS was performed using slice-selective excitation with semi-localization by adiabatic selective refocusing (sLASER) and stimulated echo acquisition mode (STEAM) localization, and selPOCE-MRS using STEAM. Sequences were tested in a phantom containing non-enriched Glu and Gln, and in three healthy volunteers during uniformly labeled 13C-glucose infusions. In one subject the voxel position was alternated between bi-frontal and bi-occipital placement within one session. [4-13C]Glu-H4 and [4-13C]Gln-H4 signals could be separately detected using both STEAM-POCE and STEAM-selPOCE in the phantom. In vivo, [4,5-13C]Glx could be detected using both sLASER-POCE and STEAM-POCE, with similar sensitivities, but [4,5-13C]Glu and [4,5-13C]Gln signals could not be completely resolved. STEAM-POCE was alternately performed bi-frontal and bi-occipital within a single session without repositioning of the subject, yielding similar results. With STEAM-selPOCE, [4,5-13C]Glu and [4,5-13C]Gln could be clearly separated. We have shown that with our setup indirect dynamic 1H-[13C] MRS at 7 T is feasible in different locations in the brain within one session, and by using STEAM-selPOCE it is possible to separate Glu from Gln in vivo while obtaining high quality spectra.

2.
NMR Biomed ; : e5155, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616046

RESUMO

Methods for early treatment response evaluation to systemic therapy of liver metastases are lacking. Tumor tissue often exhibits an increased ratio of phosphomonoesters to phosphodiesters (PME/PDE), which can be noninvasively measured by phosphorus magnetic resonance spectroscopy (31P MRS), and may be a marker for early therapy response assessment in liver metastases. However, with commonly used 31P surface coils for liver 31P MRS, the liver is not fully covered, and metastases may be missed. The objective of this study was to demonstrate the feasibility of 31P MRS imaging (31P MRSI) with full liver coverage to assess 31P metabolite levels and chemotherapy-induced changes in liver metastases of gastro-esophageal cancer, using a 31P whole-body birdcage transmit coil in combination with a 31P body receive array at 7 T. 3D 31P MRSI data were acquired in two patients with hepatic metastases of esophageal cancer, before the start of chemotherapy and after 2 (and 9 in patient 2) weeks of chemotherapy. 3D 31P MRSI acquisitions were performed using an integrated 31P whole-body transmit coil in combination with a 16-channel body receive array at 7 T, with a field of view covering the full abdomen and a nominal voxel size of 20-mm isotropic. From the 31P MRSI data, 12 31P metabolite signals were quantified. Prior to chemotherapy initiation, both PMEs, that is, phosphocholine (PC) and phosphoethanolamine (PE), were significantly higher in all metastases compared with the levels previously determined in the liver of healthy volunteers. After 2 weeks of chemotherapy, PC and PE levels remained high or even increased further, resulting in increased PME/PDE ratios compared with healthy liver tissue, in correspondence with the clinical assessment of progressive disease after 2 months of chemotherapy. The suggested approach may present a viable tool for early therapy (non)response assessment of tumor metabolism in patients with liver metastases.

3.
J Magn Reson Imaging ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485455

RESUMO

BACKGROUND: Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31 P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31 P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE: To assess the technical feasibility and repeatability of 31 P MR spectroscopic imaging (MRSI) of the pancreas, compare 31 P metabolite levels between pancreas and liver, and determine the feasibility of 31 P MRSI in pancreatic cancer. STUDY TYPE: Prospective cohort study. POPULATION: 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE: 7-T, 31 P FID-MRSI, 1 H gradient-echo MRI. ASSESSMENT: 31 P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31 P MRSI data of pancreas and liver voxels (segmented on 1 H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS: Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS: The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION: In vivo 31 P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

4.
J Magn Reson Imaging ; 57(4): 1144-1155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35916278

RESUMO

BACKGROUND: The incidence of liver and pancreatic cancer is rising. Patients benefit from current treatments, but there are limitations in the evaluation of (early) response to treatment. Tumor metabolic alterations can be measured noninvasively with phosphorus (31 P) magnetic resonance spectroscopy (MRS). PURPOSE: To conduct a quantitative analysis of the available literature on 31 P MRS performed in hepatopancreatobiliary cancer and to provide insight into its current and potential for therapy (non-) response assessment. POPULATION: Patients with hepatopancreatobiliary cancer. FIELD STRENGTH/SEQUENCE: 31 P MRS. ASSESSMENT: The PubMed, EMBASE, and Cochrane library databases were systematically searched for studies published to 17 March 17, 2022. All 31 P MRS studies in hepatopancreatobiliary cancer reporting 31 P metabolite levels were included. STATISTICAL TESTS: Relative differences in 31 P metabolite levels/ratios between patients before therapy and healthy controls, and the relative changes in 31 P metabolite levels/ratios in patients before and after therapy were determined. RESULTS: The search yielded 10 studies, comprising 301 subjects, of whom 132 (44%) healthy volunteers and 169 (56%) patients with liver cancer of various etiology. To date, 31 P MRS has not been applied in pancreatic cancer. In liver cancer, alterations in levels of 31 P metabolites involved in cell proliferation (phosphomonoesters [PMEs] and phosphodiesters [PDEs]) and energy metabolism (ATP and inorganic phosphate [Pi]) were observed. In particular, liver tumors were associated with elevations of PME/PDE and PME/Pi compared to healthy liver tissue, although there was a broad variety among studies (elevations of 2%-267% and 21%-233%, respectively). Changes in PME/PDE in liver tumors upon therapy were substantial, yet very heterogeneous and both decreases and increases were observed, whereas PME/Pi was consistently decreased after therapy in all studies (-13% to -76%). DATA CONCLUSION: 31 P MRS has great potential for treatment monitoring in oncology. Future studies are needed to correlate the changes in 31 P metabolite levels in hepatopancreatobiliary tumors with treatment response. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Espectroscopia de Ressonância Magnética/métodos , Fósforo , Organofosfatos
5.
NMR Biomed ; 36(4): e4882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36451530

RESUMO

Patient-derived cancer cells cultured in vitro are a cornerstone of cancer metabolism research. More recently, the introduction of organoids has provided the research community with a more versatile model system. Physiological structure and organization of the cell source tissue are maintained in organoids, representing a closer link to in vivo tumor models. High-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) is a commonly applied analytical approach for metabolic profiling of intact tissue, but its use has not been reported for organoids. The aim of the current work was to compare the performance of HR MAS MRS and extraction-based nuclear magnetic resonance (NMR) in metabolic profiling of wild-type and tumor progression organoids (TPOs) from human colon cancer, and further to investigate how the sequentially increased genetic alterations of the TPOs affect the metabolic profile. Sixteen metabolites were reliably identified and quantified both in spectra based on NMR of extracts and HR MAS MRS of intact organoids. The metabolite concentrations from the two approaches were highly correlated (r = 0.94), and both approaches were able to capture the systematic changes in metabolic features introduced by the genetic alterations characteristic of colorectal cancer progression (e.g., increased levels of lactate and decreased levels of myo-inositol and phosphocholine with an increasing number of mutations). The current work highlights that HR MAS MRS is a well-suited method for metabolic profiling of intact organoids, with the additional benefit that the nondestructive nature of HR MAS enables subsequent recovery of the organoids for further analyses based on nucleic acids or proteins.


Assuntos
Neoplasias Colorretais , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Metaboloma
6.
NMR Biomed ; 36(5): e4877, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36400716

RESUMO

Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Fósforo/metabolismo , Análise de Componente Principal , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Fígado/metabolismo , Razão Sinal-Ruído
7.
Front Neurol ; 12: 718423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557149

RESUMO

The onco-metabolite 2-hydroxyglutarate (2HG), a biomarker of IDH-mutant gliomas, can be detected with 1H MR spectroscopy (1H-MRS). Recent studies showed measurements of 2HG at 7T with substantial gain in signal to noise ratio (SNR) and spectral resolution, offering higher specificity and sensitivity for 2HG detection. In this study, we assessed the sensitivity of semi-localized by adiabatic selective refocusing (sLASER) and J-difference MEsher-GArwood-semi-LASER (MEGA-sLASER) for 2HG detection at 7T. We performed spectral editing at long TE using a TE-optimized sLASER sequence (110 ms) and J-difference spectroscopy using MEGA-sLASER (TE = 74ms) in phantoms with different 2HG concentrations to assess the sensitivity of 2HG detection. The robustness of the methods against B0 inhomogeneity was investigated. Moreover, the performance of these two techniques was evaluated in four patients with IDH1-mutated glioma. In contrary to MEGA-sLASER, sLASER was able to detect 2HG concentration as low as 0.5 mM. In case of a composite phantom containing 2HG with overlapping metabolites, MEGA-sLASER provided a clean 2HG signal with higher fitting reliability (lower %CRLB). The results demonstrate that sLASER is more robust against field inhomogeneities and experimental or motion-related artifacts which promotes to adopt sLASER in clinical implementations.

8.
NMR Biomed ; 32(11): e4137, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31329342

RESUMO

Energy metabolism of the human visual cortex was investigated by performing 31 P functional MRS. INTRODUCTION: The human brain is known to be the main glucose demanding organ of the human body and neuronal activity can increase this energy demand. In this study we investigate whether alterations in pH during activation of the brain can be observed with MRS, focusing on the mitochondrial inorganic phosphate (Pi) pool as potential marker of energy demand. METHODS: Six participants were scanned with 16 consecutive 31 P-MRSI scans, which were divided in 4 blocks of 8:36 minutes of either rest or visual stimulation. Since the signals from the mitochondrial compartments of Pi are low, multiple approaches to achieve high SNR 31 P measurements were combined. This included: a close fitting 31 P RF coil, a 7 T-field strength, Ernst angle acquisitions and a stimulus with a large visual angle allowing large spectroscopy volumes containing activated tissue. RESULTS: The targeted resonance downfield of the main Pi peak could be distinguished, indicating the high SNR of the 31 P spectra. The peak downfield of the main Pi peak is believed to be connected to mitochondrial performance. In addition, a BOLD effect in the PCr signal was observed as a signal increase of 2-3% during visual stimulation as compared to rest. When averaging data over multiple volunteers, a small subtle shift of about 0.1 ppm of the downfield Pi peak towards the main Pi peak could be observed in the first 4 minutes of visual stimulation, but no longer in the 4 to 8 minute scan window. Indications of a subtle shift during visual stimulation were found, but this effect remains small and should be further validated. CONCLUSION: Overall, the downfield peak of Pi could be observed, revealing opportunities and considerations to measure specific acidity (pH) effects in the human visual cortex.


Assuntos
Espaço Extracelular/metabolismo , Espectroscopia de Ressonância Magnética , Mitocôndrias/metabolismo , Fósforo/metabolismo , Estimulação Luminosa , Razão Sinal-Ruído , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Fosfocreatina/metabolismo , Córtex Visual/diagnóstico por imagem , Adulto Jovem
9.
NMR Biomed ; 32(8): e4110, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136039

RESUMO

PURPOSE: Metabolic MRI is a noninvasive technique that can give new insights into understanding cancer metabolism and finding biomarkers to evaluate or monitor treatment plans. Using this technique, a previous study has shown an increase in pH during neoadjuvant chemotherapy (NAC) treatment, while recent observation in a different study showed a reduced amide proton transfer (APT) signal during NAC treatment (negative relation). These findings are counterintuitive, given the known intrinsic positive relation of APT signal to pH. METHODS: In this study we combined APT MRI and 31 P-MRSI measurements to unravel the relation between the APT signal and pH in breast cancer. Twenty-two breast cancer patients were scanned with a 7 T MRI before and after the first cycle of NAC treatment. pH was determined by the chemical shift of inorganic phosphate (Pi). RESULTS: While APT signals have a positive relation to pH and amide content, we observed a direct negative linear correlation between APT signals and pH in breast tumors in vivo. CONCLUSIONS: As differentiation of cancer stages was confirmed by observation of a linear correlation between cell proliferation marker PE/Pi (phosphoethanolamine over inorganic phosphate) and pH in the tumor, our data demonstrates that the concentration of mobile proteins likely supersedes the contribution of the exchange rate to the APT signal.


Assuntos
Amidas/química , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Imageamento por Ressonância Magnética , Adulto , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Concentração de Íons de Hidrogênio , Pessoa de Meia-Idade , Terapia Neoadjuvante , Prótons
10.
NMR Biomed ; 32(6): e4086, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30924571

RESUMO

The purpose of this work was to investigate whether noninvasive early detection (after the first cycle) of response to neoadjuvant chemotherapy (NAC) in breast cancer patients was possible. 31 P-MRSI at 7 T was used to determine different phosphor metabolites ratios and correlate this to pathological response. 31 P-MRSI was performed in 12 breast cancer patients treated with NAC. 31 P spectra were fitted and aligned to the frequency of phosphoethanolamine (PE). Metabolic signal ratios for phosphomonoesters/phosphodiesters (PME/PDE), phosphocholine/glycerophosphatidylcholine (PC/GPtC), phosphoethanolamine/glycerophosphoethanolamine (PE/GPE) and phosphomonoesters/in-organic phosphate (PME/Pi) were determined from spectral fitting of the individual spectra and the summed spectra before and after the first cycle of NAC. Metabolic ratios were subsequently related to pathological response. Additionally, the correlation between the measured metabolic ratios and Ki-67 levels was determined using linear regression. Four patients had a pathological complete response after treatment, five patients a partial pathological response, and three patients did not respond to NAC. In the summed spectrum after the first cycle of NAC, PME/Pi and PME/PDE decreased by 18 and 13%, respectively. A subtle difference among the different response groups was observed in PME/PDE, where the nonresponders showed an increase and the partial and complete responders a decrease (P = 0.32). No significant changes in metabolic ratios were found. However, a significant association between PE/Pi and the Ki-67 index was found (P = 0.03). We demonstrated that it is possible to detect subtle changes in 31 P metabolites with a 7 T MR system after the first cycle of NAC treatment in breast cancer patients. Nonresponders showed different changes in metabolic ratios compared with partial and complete responders, in particular for PME/PDE; however, more patients need to be included to investigate its clinical value.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Espectroscopia de Ressonância Magnética , Terapia Neoadjuvante , Fosfolipídeos/metabolismo , Fósforo/metabolismo , Adulto , Etanolaminas/metabolismo , Feminino , Humanos , Metaboloma , Pessoa de Meia-Idade , Fosfatidiletanolaminas/metabolismo
11.
Sci Rep ; 9(1): 1089, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705355

RESUMO

Chemical exchange saturation transfer (CEST) exploits the chemical exchange of labile protons of an endogenous or exogenous compound with water to image the former indirectly through the water signal. Z-spectra of the brain have traditionally been analyzed for two most common saturation phenomena: downfield amide proton transfer (APT) and upfield nuclear Overhauser enhancement (NOE). However, a great body of brain metabolites, many of interest in neurology and oncology, contributes to the downfield saturation in Z-spectra. The extraction of these "hidden" metabolites from Z-spectra requires careful design of CEST sequences and data processing models, which is only possible by first obtaining CEST signatures of the brain metabolites possessing labile protons. In this work, we measured exchange rates of all major-for-CEST brain metabolites in the physiological pH range at 37 °C. Analysis of their contributions to Z-spectra revealed that regardless of the main magnetic field strength and pH, five main contributors, i.e. myo-inositol, creatine, phosphocreatine, glutamate, and mobile (poly)peptides, account for ca. 90% of downfield CEST effect. The fundamental CEST parameters presented in this study can be exploited in the design of novel CEST sequences and Z-spectra processing models, which will enable simultaneous and quantitative CEST imaging of multiple metabolites: multicolor CEST.


Assuntos
Encéfalo/metabolismo , Metaboloma , Animais , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Compostos Organofosforados
12.
NMR Biomed ; 32(10): e4011, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30311703

RESUMO

Phosphorus MRS offers a non-invasive tool for monitoring cell energy and phospholipid metabolism and can be of additional value in diagnosing cancer and monitoring cancer therapy. In this study, we determined the transverse relaxation times of a number of phosphorous metabolites in a group of breast cancer patients by adiabatic multi-echo spectroscopic imaging at 7 T. The transverse relaxation times of phosphoethanolamine, phosphocholine, inorganic phosphate (Pi ), glycerophosphocholine and glycerophosphatidylcholine were 184 ± 8 ms, 203 ± 17 ms, 87 ± 8 ms, 240 ± 56 ms and 20 ± 10 ms, respectively. The transverse relaxation time of Pi in breast cancer tissue was less than half that of healthy fibroglandular tissue. This effect is most likely caused by an up-regulation of glycolysis in breast cancer tissue that leads to interaction of Pi with the GAPDH enzyme, which forms part of the reversible pathway of exchange of Pi with gamma-adenosine tri-phosphate, thus shortening its apparent transverse relaxation time. As healthy breast tissue shows very little glycolytic activity, the apparent T2 shortening of Pi due to malignant transformation could possibly be used as a biomarker for cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Espectroscopia de Ressonância Magnética , Fosfatos/metabolismo , Idoso , Feminino , Humanos , Metaboloma , Pessoa de Meia-Idade , Fatores de Tempo
13.
Magn Reson Med ; 80(1): 29-35, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215148

RESUMO

PURPOSE: To determine the phosphorus-31 T2 s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the healthy human brain at 7T. METHODS: A 3D chemical shift imaging multi-echo sequence with composite block pulses for refocusing was used to measure one free induction decay (FID) and seven full echoes with an echo spacing of 45 ms on the brain of nine healthy volunteers (age range 22-45 years; average age 27 ± 8 years). Spectral fitting was used to determine the change in metabolic signal amplitude with echo time. RESULTS: The average apparent T2 s with their standard deviation were 202 ± 6 ms, 129 ± 6 ms, 86 ± 2 ms, 214 ± 10 ms, and 213 ± 11 ms for phosphoethanolamine, phosphocholine, inorganic phosphate, glycerophosphoethanolamine, and glycerophosphocholine, respectively. CONCLUSION: The determined apparent T2 for phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine is approximately 200 ms. The lower apparent T2 value for phosphocholine is attributed to the overlap of this resonance with the 3-phosphorous resonance of 2,3-diphosphoglycerate from blood, with an apparent shorter T2 . Omitting the FID signal and the first echo of phosphocholine leads to a T2 of 182 ± 7 ms, whereas a biexponential analysis leads to 203 ± 4 ms. These values are more in line with phosphoethanolamine and the phosphodiesters. The short T2 of inorganic phosphate is subscribed to the fast reversible exchange with γ-adenosine triphosphate, which is mediated by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase within the glycolytic pathway. Magn Reson Med 80:29-35, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular , Ésteres/química , Oligonucleotídeos/química , Fosfatos/química , Fósforo/química , Trifosfato de Adenosina/química , Adulto , Artefatos , Mapeamento Encefálico , Feminino , Glicólise , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28032377

RESUMO

In vivo water- and fat-suppressed 1 H magnetic resonance spectroscopy (MRS) and 31 P magnetic resonance adiabatic multi-echo spectroscopic imaging were performed at 7 T in duplicate in healthy fibroglandular breast tissue of a group of eight volunteers. The transverse relaxation times of 31 P metabolites were determined, and the reproducibility of 1 H and 31 P MRS was investigated. The transverse relaxation times for phosphoethanolamine (PE) and phosphocholine (PC) were fitted bi-exponentially, with an added short T2 component of 20 ms for adenosine monophosphate, resulting in values of 199 ± 8 and 239 ± 14 ms, respectively. The transverse relaxation time for glycerophosphocholine (GPC) was also fitted bi-exponentially, with an added short T2 component of 20 ms for glycerophosphatidylethanolamine, which resonates at a similar frequency, resulting in a value of 177 ± 6 ms. Transverse relaxation times for inorganic phosphate, γ-ATP and glycerophosphatidylcholine mobile phospholipid were fitted mono-exponentially, resulting in values of 180 ± 4, 19 ± 3 and 20 ± 4 ms, respectively. Coefficients of variation for the duplicate determinations of 1 H total choline (tChol) and the 31 P metabolites were calculated for the group of volunteers. The reproducibility of inorganic phosphate, the sum of phosphomonoesters and the sum of phosphodiesters with 31 P MRS imaging was superior to the reproducibility of 1 H MRS for tChol. 1 H and 31 P data were combined to calculate estimates of the absolute concentrations of PC, GPC and PE in healthy fibroglandular tissue, resulting in upper limits of 0.1, 0.1 and 0.2 mmol/kg of tissue, respectively.


Assuntos
Mama/metabolismo , Compostos de Fósforo/metabolismo , Fósforo/farmacocinética , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Mama/anatomia & histologia , Feminino , Humanos , Taxa de Depuração Metabólica , Compostos Radiofarmacêuticos/farmacocinética , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Distribuição Tecidual
16.
Front Oncol ; 6: 29, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26913240

RESUMO

PURPOSE: The identification of the phosphodiester (PDE) (31)P MR signals in the healthy human breast at ultra-high field. METHODS: In vivo (31)P MRS measurements at 7 T of the PDE signals in the breast were performed investigating the chemical shifts, the transverse- and the longitudinal relaxation times. Chemical shifts and transverse relaxation times were compared with non-ambiguous PDE signals from the liver. RESULTS: The chemical shifts of the PDE signals are shifted -0.5 ppm with respect to glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), and the transverse and longitudinal relaxation times for these signals are a factor 3 to 4 shorter than expected for aqueous GPC and GPE. CONCLUSION: The available experimental evidence suggests that GPC and GPE are not the main source of the PDE signals measured in fibroglandular breast tissue at 7 T. These signals may predominantly originate from mobile phospholipids.

17.
Springerplus ; 5: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26759752

RESUMO

The aim of this study is to compare the current state of lesion identification, the BI-RADS classification and the contrast-enhancement behavior at 7T and 3T breast MRI in the same patient group. Twenty-seven patients with thirty suspicious lesions were selected for this prospective study and underwent both 7T and 3T MRI. All examinations were rated by two radiologists (R1 and R2) independently on image quality, lesion identification and BI-RADS classification. We assessed sensitivity, specificity, NPV and PPV, observer agreement, lesion sizes, and contrast-enhancement-to-noise ratios (CENRs) of mass lesions. Fifteen of seventeen histopathological proven malignant lesions were detected at both field strengths. Image quality of the dynamic series was good at 7T, and excellent at 3T (P = 0.001 for R1 and P = 0.88 for R2). R1 found higher rates of specificity, NPV and PPV at 7T when compared to 3T, while R2 found the same results for sensitivity, specificity, NPV and PPV for both field strengths. The observers showed excellent agreement for BI-RADS categories at 7T (κ = 0.86) and 3T (κ = 0.93). CENRs were higher at 7T (P = 0.015). Lesion sizes were bigger at 7T according to R2 (P = 0.039). Our comparison study shows that 7T MRI allows BI-RADS conform analysis. Technical improvements, such as acquisition of T2w sequences and adjustment of B1+ field inhomogeneity, are still necessary to allow clinical use of 7T breast MRI.

18.
Magn Reson Imaging ; 34(2): 219-26, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597833

RESUMO

PURPOSE: Liver diseases are a major global health concern often requiring invasive assessment by needle biopsy. (31)P magnetic resonance spectroscopic imaging (MRSI) allows non-invasive probing of important liver metabolites. Recently, the adiabatic multi-echo spectroscopic imaging sequence with spherical k-space sampling (AMESING) was introduced at 7T, enabling acquisition of T2 information. T2-weighed averaging of the multiple echoes improves signal-to-noise ratio (SNR). The purpose of our study was to implement AMESING MRSI of the liver at 3T and 7T, derive localized T2 information and compare T2-weighted average spectra in terms of SNR. METHODS: Ten male volunteers underwent 2D AMESING MRSI at 3T and 7T after a minimum four-hour fast. SNR was calculated for PC, PE, Pi, GPE, GPC and α-ATP using maximum peak amplitudes and the SD of the noise. Metabolite peak ratios were calculated after fitting in jMRUI. SNR values and peak ratios were compared with the Wilcoxon signed-rank test. RESULTS: For the first time liver metabolites' T2 values at 7T were measured: PE (55.6±3.5 ms), PC (51.2±2.3 ms), Pi (46.4±1.1 ms), GPE (44.0±0.8 ms), GPC (50.4±0.8 ms) and α-ATP (18.2±0.4 ms). SNR gain using T2-weighted averaging at 7T resulted in a 1.2× SNR gain. In conjunction with higher field strength and improved coil set-up T2-weighted averaging at 7T allowed a total 3.2× SNR gain compared to 3T FID-only. CONCLUSION: AMESING 2D MRSI of the liver at 7T provides T2 values that allow T2-weighted averaging of data from multiple echoes resulting in improved SNR.


Assuntos
Artefatos , Aumento da Imagem/métodos , Fígado/anatomia & histologia , Fígado/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Compostos de Fósforo/metabolismo , Adulto , Algoritmos , Biomarcadores/metabolismo , Humanos , Masculino , Isótopos de Fósforo/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído , Distribuição Tecidual
19.
NMR Biomed ; 29(9): 1222-30, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26601921

RESUMO

The purpose of this article was to compare the sensitivity of proton observed phosphorus editing (POPE) with direct (31) P MRS with Ernst angle excitation for (1) H-(31) P coupled metabolites at 7 T. POPE sequences were developed for detecting phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC), and glycerophosphoethanolamine (GPE) on the (1) H channel, thereby using the enhanced sensitivity of the (1) H nuclei over (31) P detection. Five healthy volunteers were examined with POPE and (31) P-MRS. POPE editing showed a more than doubled sensitivity in an ideal phantom experiment as compared with direct (31) P MRS with Ernst angle excitation. In vivo, despite increased relaxation losses, significant gains in signal-to-noise ratio (SNR) of 30-40% were shown for PE and GPE + PC levels in the human brain. The SNR of GPC was lower in the POPE measurement compared with the (31) P-MRS measurement. Furthermore, selective narrowband editing on the (31) P channel showed the ability to separate the overlapping GPE and PE signals in the (1) H spectrum. POPE can be used for enhanced detection of (1) H-(31) P coupled metabolites in vivo. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Algoritmos , Encéfalo/metabolismo , Imagem Molecular/métodos , Fosfolipídeos/metabolismo , Isótopos de Fósforo/farmacocinética , Espectroscopia de Prótons por Ressonância Magnética/métodos , Encéfalo/anatomia & histologia , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/instrumentação , Imagens de Fantasmas , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
20.
Magn Reson Med ; 76(2): 402-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26418725

RESUMO

PURPOSE: To investigate longitudinal relaxation times and saturation-transfer effects of phosphorous metabolites in breast fibroglandular tissue in vivo with (31) P MR spectroscopy at 7T. METHODS: Progressive saturation with adiabatic half passage excitation was used to determine T1 values of (31) P metabolites in a group of six healthy volunteers. Saturation-transfer experiments were performed in seven healthy volunteers by saturating at 0 ppm and 10 ppm with sinc-Gaussian pulses (90 ms; 10-ms pulse interval; B1 = 17 µT) prior to excitation. Localization was performed by surface coils and one-dimensional chemical shift imaging. Data were analyzed via spectral fitting with the JMRUI software package, and T1 values were obtained by fitting the data to the signal equation. RESULTS: The determined longitudinal relaxation time values at 7T were as follows: phosphoethanolamine, 4.0 ± 0.2 s; phosphocholine, 1.8 ± 0.2 s; inorganic phosphate, 6.1 ± 0.1 s; phosphodiesters, glycerophosphatidylethanolamine plus glycerophosphocholine, 2.1 ± 0.1, and glycerophosphatidylethanolamine, 1.5 ± 0.1s; γ-ATP, 2.1 ± 0.1 s; and α-ATP, 2.0 ± 0.1 s. Saturation-transfer measurements with saturation pulses at 0 ppm showed a significant signal reduction in the phosphodiester 2-3 ppm range, whereas the γ-ATP signal at -2.5 ppm was not affected significantly. CONCLUSION: Longitudinal relaxation times of phosphorous metabolites in fibroglandular tissue revealed relatively low T1 values for phosphodiesters. Saturation-transfer measurements showed that the phosphodiester signals were the only signals that were affected significantly, possibly indicating the presence of mobile phospholipids. Magn Reson Med 76:402-407, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Mama/anatomia & histologia , Mama/metabolismo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Compostos de Fósforo/metabolismo , Fósforo/farmacocinética , Adulto , Feminino , Humanos , Taxa de Depuração Metabólica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...