Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1369507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846804

RESUMO

Neuromuscular disorders often lead to ankle plantar flexor muscle weakness, which impairs ankle push-off power and forward propulsion during gait. To improve walking speed and reduce metabolic cost of transport (mCoT), patients with plantar flexor weakness are provided dorsal-leaf spring ankle-foot orthoses (AFOs). It is widely believed that mCoT during gait depends on the AFO stiffness and an optimal AFO stiffness that minimizes mCoT exists. The biomechanics behind why and how an optimal stiffness exists and benefits individuals with plantar flexor weakness are not well understood. We hypothesized that the AFO would reduce the required support moment and, hence, metabolic cost contributions of the ankle plantar flexor and knee extensor muscles during stance, and reduce hip flexor metabolic cost to initiate swing. To test these hypotheses, we generated neuromusculoskeletal simulations to represent gait of an individual with bilateral plantar flexor weakness wearing an AFO with varying stiffness. Predictions were based on the objective of minimizing mCoT, loading rates at impact and head accelerations at each stiffness level, and the motor patterns were determined via dynamic optimization. The predictive gait simulation results were compared to experimental data from subjects with bilateral plantar flexor weakness walking with varying AFO stiffness. Our simulations demonstrated that reductions in mCoT with increasing stiffness were attributed to reductions in quadriceps metabolic cost during midstance. Increases in mCoT above optimum stiffness were attributed to the increasing metabolic cost of both hip flexor and hamstrings muscles. The insights gained from our predictive gait simulations could inform clinicians on the prescription of personalized AFOs. With further model individualization, simulations based on mCoT minimization may sufficiently predict adaptations to an AFO in individuals with plantar flexor weakness.

2.
Sci Rep ; 14(1): 11910, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789587

RESUMO

The aim of this comparative, cross-sectional study was to determine whether markerless motion capture can track deviating gait patterns in children with cerebral palsy (CP) to a similar extent as marker-based motion capturing. Clinical gait analysis (CGA) was performed for 30 children with spastic CP and 15 typically developing (TD) children. Marker data were processed with the Human Body Model and video files with Theia3D markerless software, to calculate joint angles for both systems. Statistical parametric mapping paired t-tests were used to compare the trunk, pelvis, hip, knee and ankle joint angles, for both TD and CP, as well as for the deviation from the norm in the CP group. Individual differences were quantified using mean absolute differences. Markerless motion capture was able to track frontal plane angles and sagittal plane knee and ankle angles well, but individual deviations in pelvic tilt and transverse hip rotation as present in CP were not captured by the system. Markerless motion capture is a promising new method for CGA in children with CP, but requires improvement to better capture several clinically relevant deviations especially in pelvic tilt and transverse hip rotation.


Assuntos
Paralisia Cerebral , Análise da Marcha , Humanos , Paralisia Cerebral/fisiopatologia , Criança , Masculino , Feminino , Análise da Marcha/métodos , Estudos Transversais , Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Articulação do Tornozelo/fisiopatologia , Articulação do Quadril/fisiopatologia , Fenômenos Biomecânicos , Adolescente , Amplitude de Movimento Articular , Captura de Movimento
3.
Gait Posture ; 110: 144-149, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608379

RESUMO

BACKGROUND: Foot deformities (e.g. planovalgus and cavovarus) are very common in children with spastic cerebral palsy (CP), with the midfoot often being involved. Dynamic foot function can be assessed with 3D gait analysis including a multi-segment foot model. Incorporating a midfoot segment in such a model, allows quantification of separate Chopart and Lisfranc joint kinematics. Yet, midfoot kinematics have not previously been reported in CP. RESEARCH QUESTIONS: What is the difference in multi-segment kinematics including midfoot joints between common foot deformities in CP and typically-developing feet? METHODS: 103 feet of 57 children with spastic CP and related conditions were retrospectively included and compared with 15 typically-developing children. All children underwent clinical gait analysis with the Amsterdam Foot Model marker set. Multi-segment foot kinematics were calculated for three strides per foot and averaged. A k-means cluster analysis was performed to identify foot deformity groups that were present within CP data. The deformity type represented by each cluster was based on the foot posture index. Kinematic output of the clusters was compared to typically-developing data for a static standing trial and for the range of motion and kinematic waveforms during walking, using regular and SPM independent t-tests respectively. RESULTS: A neutral, planovalgus and varus cluster were identified. Neutral feet showed mostly similar kinematics as typically-developing data. Planovalgus feet showed increased ankle valgus and Chopart dorsiflexion, eversion and abduction. Varus feet showed increased ankle varus and Chopart inversion and adduction. SIGNIFICANCE: This study is the first to describe Chopart and Lisfranc joint kinematics in different foot deformities of children with CP. It shows that adding a midfoot segment can provide additional clinical and kinematic information. It highlights joint angles that are more distinctive between deformities, which could be helpful to optimize the use of multi-segment foot kinematics in the clinical decision making process.


Assuntos
Paralisia Cerebral , Humanos , Paralisia Cerebral/fisiopatologia , Criança , Fenômenos Biomecânicos , Masculino , Feminino , Estudos Retrospectivos , Pé/fisiopatologia , Amplitude de Movimento Articular/fisiologia , Análise da Marcha , Marcha/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Deformidades do Pé/fisiopatologia , Articulações do Pé/fisiopatologia , Pré-Escolar , Adolescente
4.
J Biomech ; 166: 112001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527409

RESUMO

Segment coordinate systems (CSs) of marker-based multi-segment foot models are used to measure foot kinematics, however their relationship to the underlying bony anatomy is barely studied. The aim of this study was to compare marker-based CSs (MCSs) with bone morphology-based CSs (BCSs) for the hindfoot and forefoot. Markers were placed on the right foot of fifteen healthy adults according to the Oxford, Rizzoli and Amsterdam Foot Model (OFM, RFM and AFM, respectively). A CT scan was made while the foot was loaded in a simulated weight-bearing device. BCSs were based on axes of inertia. The orientation difference between BCSs and MCSs was quantified in helical and 3D Euler angles. To determine whether the marker models were able to capture inter-subject variability in bone poses, linear regressions were performed. Compared to the hindfoot BCS, all MCSs were more toward plantar flexion and internal rotation, and RFM was also oriented toward more inversion. Compared to the forefoot BCS, OFM and RFM were oriented more toward dorsal and plantar flexion, respectively, and internal rotation, while AFM was not statistically different in the sagittal and transverse plane. In the frontal plane, OFM was more toward eversion and RFM and AFM more toward inversion compared to BCS. Inter-subject bone pose variability was captured with RFM and AFM in most planes of the hindfoot and forefoot, while this variability was not captured by OFM. When interpreting multi-segment foot model data it is important to realize that MCSs and BCSs do not always align.


Assuntos
, Marcha , Adulto , Humanos , Pé/diagnóstico por imagem , Caminhada , Mãos , Extremidade Inferior , Fenômenos Biomecânicos
5.
Clin Biomech (Bristol, Avon) ; 111: 106152, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091916

RESUMO

BACKGROUND: Most cases of toe walking in children are idiopathic. We used pathology-specific neuromusculoskeletal predictive simulations to identify potential underlying neural and muscular mechanisms contributing to idiopathic toe walking. METHODS: A musculotendon contracture was added to the ankle plantarflexors of a generic musculoskeletal model to represent a pathology-specific contracture model, matching the reduced ankle dorsiflexion range-of-motion in a cohort of children with idiopathic toe walking. This model was employed in a forward dynamic simulation controlled by reflexes and supraspinal drive, governed by a multi-objective cost function to predict gait patterns with the contracture model. We validated the predicted gait using experimental gait data from children with idiopathic toe walking with ankle contracture, by calculating the root mean square errors averaged over all biomechanical variables. FINDINGS: A predictive simulation with the pathology-specific model with contracture approached experimental ITW data (root mean square error = 1.37SD). Gastrocnemius activation was doubled from typical gait simulations, but lacked a peak in early stance as present in electromyography. This synthesised idiopathic toe walking was more costly for all cost function criteria than typical gait simulation. Also, it employed a different neural control strategy, with increased length- and velocity-based reflex gains to the plantarflexors in early stance and swing than typical gait simulations. INTERPRETATION: The simulations provide insights into how a musculotendon contracture combined with altered neural control could contribute to idiopathic toe walking. Insights into these neuromuscular mechanisms could guide future computational and experimental studies to gain improved insight into the cause of idiopathic toe walking.


Assuntos
Contratura , Caminhada , Criança , Humanos , Caminhada/fisiologia , Dedos do Pé/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
6.
J Appl Biomech ; 39(5): 334-346, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532263

RESUMO

Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.

7.
Dev Med Child Neurol ; 65(12): 1629-1638, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243486

RESUMO

AIM: To obtain insights into the effects of fatigue on the kinematics, kinetics, and energy cost of walking (ECoW) in children with cerebral palsy (CP). METHOD: In this prospective observational study, 12 children with CP (mean age 12 years 9 months, SD 2 years 7 months; four females, eight males) and 15 typically developing children (mean age 10 years 8 months, SD 2 years 4 months; seven females, eight males) followed a prolonged intensity-based walking protocol on an instrumented treadmill, combined with gas analysis measurements. The protocol consisted of consecutive stages, including a 6-minute walking exercise (6MW) at comfortable speed, 2 minutes of moderate-intensity walking (MIW) (with a heart rate > 70% of its predicted maximal), and 4 minutes walking after MIW. If necessary, the speed and slope were incremented to reach MIW. Outcomes were evaluated at the beginning and end of the 6MW and after MIW. RESULTS: With prolonged walking, Gait Profile Scores deteriorated slightly for both groups (p < 0.01). Knee flexion increased during early stance (p = 0.004) and ankle dorsiflexion increased during late stance (p = 0.034) in children with CP only. Negligible effects were found for kinetics. No demonstrable change in ECoW was found in either group (p = 0.195). INTERPRETATION: Kinematic deviations in children with CP are progressive with prolonged walking. The large variation in adaptations indicates that an individual approach is recommended to investigate the effects of physical fatigue on gait in clinical practice.


Assuntos
Paralisia Cerebral , Masculino , Feminino , Humanos , Criança , Paralisia Cerebral/complicações , Marcha/fisiologia , Caminhada/fisiologia , Teste de Esforço , Fadiga/etiologia , Fenômenos Biomecânicos
8.
Gait Posture ; 102: 10-17, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870265

RESUMO

BACKGROUND: Children with cerebral palsy often show deviating calf muscle activation patterns during gait, with excess activation during early stance and insufficient activation during push-off. RESEARCH QUESTION: Can children with cerebral palsy improve their calf muscle activation patterns during gait using one session of biofeedback-driven gaming? METHODS: Eighteen children (6-17 y) with spastic cerebral palsy received implicit game-based biofeedback on electromyographic activity of the calf muscle (soleus or gastrocnemius medialis) while walking on a treadmill during one session. Biofeedback alternately aimed to reduce early stance activity, increase push-off activity, and both combined. Early stance and push-off activity and the double-bump-index (early stance divided by push-off activity) were determined during baseline and walking with feedback. Changes were assessed at group level using repeated measures ANOVA with simple contrast or Friedman test with post-hoc Wilcoxon signed rank test, as well as individually using independent t-tests or Wilcoxon rank sum tests. Perceived competence and interest-enjoyment were assessed through a questionnaire. RESULTS: Children successfully decreased their electromyographic activity during early stance feedback trials (relative decrease of 6.8 ± 12.2 %, P = 0.025), with a trend during the combined feedback trials (6.5 ± 13.9 %, P = 0.055), and increased their electromyographic activity during push-off feedback trials (8.1 ± 15.8 %, P = 0.038). Individual improvements were seen in twelve of eighteen participants. All children experienced high levels of interest-enjoyment (8.4/10) and perceived competence (8.1/10). SIGNIFICANCE: This exploratory study suggests that children with cerebral palsy can achieve small within-session improvements of their calf muscle activation pattern when provided with implicit biofeedback-driven gaming in an enjoyable manner. Follow-up gait training studies can incorporate this method to assess retention and long-term functional benefits of electromyographic biofeedback-driven gaming.


Assuntos
Paralisia Cerebral , Jogos de Vídeo , Criança , Humanos , Biorretroalimentação Psicológica/métodos , Eletromiografia , Paralisia Cerebral/complicações , Músculo Esquelético , Marcha/fisiologia , Caminhada/fisiologia
9.
Front Robot AI ; 10: 1108114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936408

RESUMO

Introduction: Video-based clinical rating plays an important role in assessing dystonia and monitoring the effect of treatment in dyskinetic cerebral palsy (CP). However, evaluation by clinicians is time-consuming, and the quality of rating is dependent on experience. The aim of the current study is to provide a proof-of-concept for a machine learning approach to automatically assess scoring of dystonia using 2D stick figures extracted from videos. Model performance was compared to human performance. Methods: A total of 187 video sequences of 34 individuals with dyskinetic CP (8-23 years, all non-ambulatory) were filmed at rest during lying and supported sitting. Videos were scored by three raters according to the Dyskinesia Impairment Scale (DIS) for arm and leg dystonia (normalized scores ranging from 0-1). Coordinates in pixels of the left and right wrist, elbow, shoulder, hip, knee and ankle were extracted using DeepLabCut, an open source toolbox that builds on a pose estimation algorithm. Within a subset, tracking accuracy was assessed for a pretrained human model and for models trained with an increasing number of manually labeled frames. The mean absolute error (MAE) between DeepLabCut's prediction of the position of body points and manual labels was calculated. Subsequently, movement and position features were calculated from extracted body point coordinates. These features were fed into a Random Forest Regressor to train a model to predict the clinical scores. The model performance trained with data from one rater evaluated by MAEs (model-rater) was compared to inter-rater accuracy. Results: A tracking accuracy of 4.5 pixels (approximately 1.5 cm) could be achieved by adding 15-20 manually labeled frames per video. The MAEs for the trained models ranged from 0.21 ± 0.15 for arm dystonia to 0.14 ± 0.10 for leg dystonia (normalized DIS scores). The inter-rater MAEs were 0.21 ± 0.22 and 0.16 ± 0.20, respectively. Conclusion: This proof-of-concept study shows the potential of using stick figures extracted from common videos in a machine learning approach to automatically assess dystonia. Sufficient tracking accuracy can be reached by manually adding labels within 15-20 frames per video. With a relatively small data set, it is possible to train a model that can automatically assess dystonia with a performance comparable to human scoring.

10.
Dev Med Child Neurol ; 65(9): 1157-1173, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36750309

RESUMO

AIM: To explore altered structural and functional connectivity and network organization in cerebral palsy (CP), by clinical CP subtype (unilateral spastic, bilateral spastic, dyskinetic, and ataxic CP). METHOD: PubMed and Embase databases were systematically searched. Extracted data included clinical characteristics, analyses, outcome measures, and results. RESULTS: Sixty-five studies were included, of which 50 investigated structural connectivity, and 20 investigated functional connectivity using functional magnetic resonance imaging (14 studies) or electroencephalography (six studies). Five of the 50 studies of structural connectivity and one of 14 of functional connectivity investigated whole-brain network organization. Most studies included patients with unilateral spastic CP; none included ataxic CP. INTERPRETATION: Differences in structural and functional connectivity were observed between investigated clinical CP subtypes and typically developing individuals on a wide variety of measures, including efferent, afferent, interhemispheric, and intrahemispheric connections. Directions for future research include extending knowledge in underrepresented CP subtypes and methodologies, evaluating the prognostic potential of specific connectivity and network measures in neonates, and understanding therapeutic effects on brain connectivity.


Assuntos
Paralisia Cerebral , Recém-Nascido , Humanos , Espasticidade Muscular , Encéfalo , Imageamento por Ressonância Magnética/métodos
11.
J Neuroeng Rehabil ; 20(1): 19, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750869

RESUMO

BACKGROUND: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. METHODS: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. RESULTS: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. CONCLUSION: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Acidente Vascular Cerebral , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Fármacos Neuromusculares/uso terapêutico , Articulação do Tornozelo , Músculo Esquelético , Espasticidade Muscular/etiologia , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
12.
Gait Posture ; 101: 138-144, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841120

RESUMO

BACKGROUND: Ultrasonography with motion analysis enables dynamic imaging of medial gastrocnemius (MG) muscles and tendons during gait. This revealed pathological muscle-tendon dynamics in children with spastic cerebral palsy (CP) compared to typically developing (TD) children. However, wearing an ultrasound probe on the lower leg could interfere with gait and bias muscle length changes observed with ultrasound. RESEARCH QUESTION: Does wearing an ultrasound probe on the MG influence gait in children with CP and TD children? METHODS: Eighteen children with spastic CP and 16 age-matched TD children walked at comfortable walking speed on an instrumented treadmill. One baseline gait condition (BASE) and two conditions with an ultrasound probe and custom-made probe holder were measured: on the mid-muscle fascicles (FAS) and on the muscle-tendon junction (MTJ). The effect of condition and group on spatiotemporal parameters, hip, knee and ankle kinematics, ankle moment, ankle power, and modeled MG muscle-tendon unit (MTU) length was assessed using two-way repeated measures ANOVA's. Statistical non-parametric mapping was applied for time-series. Post-hoc paired-samples t-tests were conducted, and the root mean square difference was calculated for significant parts. RESULTS: Children took wider steps during FAS (CP, TD) and MTJ (TD) compared to BASE, and during FAS compared to MTJ (CP). Hip extension was lower (2.7°) during terminal stance for MTJ compared to FAS for TD only. There was less swing knee flexion (FAS 4.9°; MTJ 4.0°) and ankle plantarflexion around toe-off (FAS 3.0°; MTJ 2.4°) for both ultrasound placements, with no group effect. Power absorption during loading response was slightly increased for both ultrasound placements (0.12 W/kg), with no group effect. MTU shortened less in swing for both ultrasound placements (FAS 3.6 mm; MTJ 3.7 mm), with no group effect. SIGNIFICANCE: Wearing an ultrasound probe causes minimal lower-limb gait alterations and MTU length changes that are mostly similar in CP and TD.


Assuntos
Paralisia Cerebral , Humanos , Criança , Marcha/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Tendões , Fenômenos Biomecânicos
13.
Ann Biomed Eng ; 51(5): 938-950, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36380165

RESUMO

Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque-angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.


Assuntos
Paralisia Cerebral , Humanos , Criança , Músculo Esquelético/fisiologia , Tendões , Tornozelo , Articulação do Tornozelo
14.
Front Hum Neurosci ; 16: 907565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337854

RESUMO

Background: The interpretation of clinical gait data in children with cerebral palsy (CP) is time-consuming, requires extensive expertise and often lacks transparency. Here we aimed to develop a set of look-up tables to support this process, linking typical gait features as present in CP to their potential underlying impairments. Methods: We developed an initial core set of gait features and their potential underlying impairments based on biomechanical reasoning, literature and clinical experience. This core set was further specified through a Delphi process in a multidisciplinary group of experts in gait analysis of children with CP and evaluated on 20 patient cases. The likelihood of the listed gait feature-impairment relationships was scored by the expert panel on a five-point scale. Results: The final core set included 120 relevant gait feature-impairment relations including likelihood scores. This set was presented in the form of look-up tables in both directions, i.e., sorted by gait features with potential underlying impairment, and sorted by impairments with potential related gait features. The average likelihood score for the relations was 3.5 ± 0.6 (range 2.1-4.6). Conclusion: The developed set of look-up tables linking gait features and impairments, can assist gait analysts and clinicians in standardized biomechanical reasoning, to support treatment decision-making for gait impairments in children with CP.

16.
Gait Posture ; 98: 160-166, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36126536

RESUMO

BACKGROUND: The energy cost of walking (ECw) is an important indicator of walking dysfunction in persons with multiple sclerosis (PwMS). However, its underlying causes and its relation with ankle push-off and walking speed are not well understood. RESEARCH QUESTION: What is the contribution of ankle push-off and walking speed to increased ECw in PwMS? METHODS: Ten PwMS with walking limitations and 10 individually gender- and age-matched healthy controls (HC) were included. All participants performed two 6-min walking trials on a treadmill at comfortable walking speed (CWS of PwMS) and fast walking speed (FWS, 130 % of CWS of PwMS). Kinetics and metabolic cost were evaluated. Generalized estimating equations were performed to investigate effects of group and walking speed, and their interaction. Spearman correlations were conducted to examine whether ECw was related to ankle push-off in PwMS, controlling for differences in walking speed in PwMS. RESULTS: ECw at matched walking speed was significantly higher in PwMS compared to HC. Kinetic parameters were not different between the most impaired leg in PwMS and HC at matched walking speed, but asymmetry between both legs of PwMS was observed. At FWS, ECw reduced and ankle push-off increased similarly in both groups. ECw was inversely related to peak ankle power of the most impaired leg in PwMS at CWS. SIGNIFICANCE: Slow walking speed is one factor that contributes to increased ECw in PwMS. Furthermore, PwMS who had a higher ECw showed a lower peak ankle power, independent of walking speed. This indicates that ankle push-off could be a contributor to increased ECw.


Assuntos
Tornozelo , Esclerose Múltipla , Humanos , Velocidade de Caminhada , Esclerose Múltipla/complicações , Marcha , Fenômenos Biomecânicos , Caminhada , Articulação do Tornozelo
17.
J Foot Ankle Res ; 15(1): 46, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668453

RESUMO

BACKGROUND: Foot and ankle joint kinematics are measured during clinical gait analyses with marker-based multi-segment foot models. To improve on existing models, measurement errors due to soft tissue artifacts (STAs) and marker misplacements should be reduced. Therefore, the aim of this study is to define a clinically informed, universally applicable multi-segment foot model, which is developed to minimize these measurement errors. METHODS: The Amsterdam foot model (AFM) is a follow-up of existing multi-segment foot models. It was developed by consulting a clinical expert panel and optimizing marker locations and segment definitions to minimize measurement errors. Evaluation of the model was performed in three steps. First, kinematic errors due to STAs were evaluated and compared to two frequently used foot models, i.e. the Oxford and Rizzoli foot models (OFM, RFM). Previously collected computed tomography data was used of 15 asymptomatic feet with markers attached, to determine the joint angles with and without STAs taken into account. Second, the sensitivity to marker misplacements was determined for AFM and compared to OFM and RFM using static standing trials of 19 asymptomatic subjects in which each marker was virtually replaced in multiple directions. Third, a preliminary inter- and intra-tester repeatability analysis was performed by acquiring 3D gait analysis data of 15 healthy subjects, who were equipped by two testers for two sessions. Repeatability of all kinematic parameters was assessed through analysis of the standard deviation (σ) and standard error of measurement (SEM). RESULTS: The AFM was defined and all calculation methods were provided. Errors in joint angles due to STAs were in general similar or smaller in AFM (≤2.9°) compared to OFM (≤4.0°) and RFM (≤6.7°). AFM was also more robust to marker misplacement than OFM and RFM, as a large sensitivity of kinematic parameters to marker misplacement (i.e. > 1.0°/mm) was found only two times for AFM as opposed to six times for OFM and five times for RFM. The average intra-tester repeatability of AFM angles was σ:2.2[0.9°], SEM:3.3 ± 0.9° and the inter-tester repeatability was σ:3.1[2.1°], SEM:5.2 ± 2.3°. CONCLUSIONS: Measurement errors of AFM are smaller compared to two widely-used multi-segment foot models. This qualifies AFM as a follow-up to existing foot models, which should be evaluated further in a range of clinical application areas.


Assuntos
Articulação do Tornozelo , Marcha , Fenômenos Biomecânicos , Análise da Marcha , Humanos , Extremidade Inferior , Reprodutibilidade dos Testes
18.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746168

RESUMO

Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation either directly in the doctor's office or from video recordings using standardized scales. Both methods lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens in a clinical environment. The goal of this study was to investigate whether it is feasible to use home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled inertial sensors and machine learning. Video and sensor data during both active and rest situations from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and clinically scored the dystonia of the extremities on a 0-4 scale, following the definition of amplitude of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it is possible to detected dystonia automatically using individually trained models. The predictions could complement standard dyskinetic CP measures by providing frequent, objective, real-world assessments that could enhance clinical care. A generalized model, trained with data from other subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely due to a lack of training data and dissimilarities between subjects. However, the generalized model is reasonably able to distinguish between high and lower scores. Future research should focus on gathering more high-quality data and study how the models perform over the whole day.


Assuntos
Paralisia Cerebral , Distonia , Distúrbios Distônicos , Adolescente , Paralisia Cerebral/diagnóstico , Criança , Distonia/diagnóstico , Humanos , Aprendizado de Máquina , Índice de Gravidade de Doença , Smartphone , Tecnologia
19.
Gait Posture ; 93: 7-13, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35042058

RESUMO

BACKGROUND: Muscle fatigue of the lower limbs is considered a main contributor to the perceived fatigue in children with cerebral palsy (CP) and is expected to occur during prolonged walking. In adults without disabilities, muscle fatigue has been proposed to be associated with adaptations in complexity of neuromuscular control. RESEARCH QUESTION: What are the effects of prolonged walking on signs of muscle fatigue and complexity of neuromuscular control in children with CP? METHODS: Ten children with CP and fifteen typically developing (TD) children performed a standardised protocol on an instrumented treadmill consisting of three stages: six-minutes walking at preferred speed (6 MW), moderate-intensity walking (MIW, with two minutes at heart rate > 70% of predicted maximal heart rate) and four-minutes walking at preferred speed (post-MIW). Electromyography (EMG) data were analysed for eight muscles of one leg during three time periods: 6 MW-start, 6 MW-end and post-MIW. Signs of muscle fatigue were quantified as changes in EMG median frequency and EMG root mean square (RMS). Complexity of neuromuscular control was quantified by total variance accounted for by one synergy (tVAF1). Muscle coactivation was assessed for antagonistic muscle pairs. RESULTS: EMG median frequency was decreased at 6 MW-end and post-MIW compared to 6 MW-start in children with CP (p < 0.05), but not in TD children. In both groups, EMG-RMS (p < 0.01) and muscle coactivation (p < 0.01) were decreased at 6 MW-end and post-MIW compared to 6 MW-start. tVAF1 decreased slightly at 6 MW-end and post-MIW compared to 6 MW-start in both groups (p < 0.05). Changes were most pronounced from 6 MW-start to 6 MW-end. SIGNIFICANCE: Children with CP presented signs of muscle fatigue after prolonged walking, while no effects were found for TD. Both groups showed minimal changes in tVAF1, suggesting signs of muscle fatigue are not associated with changes in complexity of neuromuscular control.


Assuntos
Paralisia Cerebral , Fadiga Muscular , Adulto , Paralisia Cerebral/complicações , Criança , Eletromiografia/métodos , Marcha/fisiologia , Humanos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia
20.
J Biomech ; 130: 110874, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34847446

RESUMO

The multibody nature of the musculoskeletal system makes each applied force potentially accelerate all body segments. Hence, muscles' actions on the kinematics of crossed and non-crossed joints should be estimated based on multibody dynamics. The objective of this study was to systematically investigate the actions of main lower limb muscles on the sagittal-plane angular kinematics of the hip, knee, and ankle joints, during upright standing and gait. Subject-specific simulations were performed to compute the muscle-tendon forces based on three-dimensional kinematic data collected from 10 able-bodied subjects during walking at preferred speed and during relaxed standing posture. A subject-scaled model consisting of the lower limb segments, 19 degrees of freedom and 92 Hill-type muscle-tendon units was used. Muscle-induced joint angular accelerations were estimated by Induced Acceleration Analysis in OpenSim. A comprehensive description of the estimated joint accelerations induced by lower limb muscles was presented, for upright standing and for the whole gait cycle. The observed muscle actions on crossed and non-crossed joints were phase- and task-specific. The main flexors and extensors for each joint were reported. Particular biarticular muscles presented actions opposite to their anatomical classification for specific joints. Antagonist muscle actions were revealed, such as the hitherto unknown opposite actions of the soleus and gastrocnemius at the ankle, and of the iliopsoas and soleus at the knee and ankle, during upright standing. Agonist actions among remote muscles were also identified. The presented muscle actions and their roles in joint kinematics of bipedal standing and walking contribute to understanding task-specific coordination.


Assuntos
Aceleração , Marcha , Fenômenos Biomecânicos , Humanos , Articulações , Músculo Esquelético , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...