Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Strength Cond Res ; 38(2): e56-e61, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844190

RESUMO

ABSTRACT: Wilmes, E, de Ruiter, CJ, van Leeuwen, RR, Banning, LF, van der Laan, D, and Savelsbergh, GJP. Different aspects of physical load in small-sided field hockey games. J Strength Cond Res 38(2): e56-e61, 2024-Running volumes and acceleration/deceleration load are known to vary with different formats of small-sided games (SSGs) in field hockey. However, little is known about other aspects of the physical load. Therefore, the aim of this study was to gain a more thorough understanding of the total physical load in field hockey SSGs. To that end, 2 different SSGs (small: 5 vs. 5, ∼100 m 2 per player; large: 9 vs. 9, ∼200 m 2 per player) were performed by 16 female elite field hockey athletes. A range of external physical load metrics was obtained using a global navigational satellite system and 3 wearable inertial measurement units on the thighs and pelvis. These metrics included distances covered in different velocity ranges (walk, jog, run, and sprint), mean absolute acceleration/deceleration, Hip Load, and time spent in several physically demanding body postures. The effects of SSG format on these external physical load metrics were assessed using linear mixed models ( p < 0.05). Running volumes in various speed ranges were higher for the large SSG. By contrast, mean absolute acceleration/deceleration and time spent in several demanding body postures were higher for the small SSG. This study shows that changing the SSG format affects different aspects of physical load differently.


Assuntos
Desempenho Atlético , Futebol Americano , Hóquei , Corrida , Humanos , Feminino , Aceleração , Frequência Cardíaca
2.
J Vis Exp ; (159)2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32538899

RESUMO

Current athlete monitoring practice in team sports is mainly based on positional data measured by global positioning or local positioning systems. The disadvantage of these measurement systems is that they do not register lower extremity kinematics, which could be a useful measure for identifying injury-risk factors. Rapid development in sensor technology may overcome the limitations of the current measurement systems. With inertial measurement units (IMUs) securely fixed to body segments, sensor fusion algorithms and a biomechanical model, joint kinematics could be estimated. The main purpose of this article is to demonstrate a sensor setup for estimating hip and knee joint kinematics of team sport athletes in the field. Five male subjects (age 22.5 ± 2.1 years; body mass 77.0 ± 3.8 kg; height 184.3 ± 5.2 cm; training experience 15.3 ± 4.8 years) performed a maximal 30-meter linear sprint. Hip and knee joint angles and angular velocities were obtained by five IMUs placed on the pelvis, both thighs and both shanks. Hip angles ranged from 195° (± 8°) extension to 100.5° (± 8°) flexion and knee angles ranged from 168.6° (± 12°) minimal flexion and 62.8° (± 12°) maximal flexion. Furthermore, hip angular velocity ranged between 802.6 °·s-1 (± 192 °·s-1) and -674.9 °·s-1 (± 130 °·s-1). Knee angular velocity ranged between 1155.9 °·s-1 (± 200 °·s-1) and -1208.2 °·s-1 (± 264 °·s-1). The sensor setup has been validated and could provide additional information with regard to athlete monitoring in the field. This may help professionals in a daily sports setting to evaluate their training programs, aiming to reduce injury and optimize performance.


Assuntos
Atletas , Articulação do Quadril/fisiologia , Articulação do Joelho/fisiologia , Fenômenos Mecânicos , Fenômenos Biomecânicos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...