Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0025523, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37724866

RESUMO

Marine macroalgae (seaweeds) are important primary producers and foundation species in coastal ecosystems around the world. Seaweeds currently contribute to an estimated 51% of the global mariculture production, with a long-term growth rate of 6% per year, and an estimated market value of more than US$11.3 billion. Viral infections could have a substantial impact on the ecology and aquaculture of seaweeds, but surprisingly little is known about virus diversity in macroalgal hosts. Using metagenomic sequencing, we characterized viral communities associated with healthy and bleached specimens of the commercially important green seaweed Ulva. We identified 20 putative new and divergent viruses, of which the majority belonged to the Circular Rep-Encoding Single-Stranded (CRESS) DNA viruses [single-stranded (ss)DNA genomes], Durnavirales [double-stranded (ds)RNA], and Picornavirales (ssRNA). Other newly identified RNA viruses were related to the Ghabrivirales, the Mitoviridae, and the Tombusviridae. Bleached Ulva samples contained particularly high viral read numbers. While reads matching assembled CRESS DNA viruses and picorna-like viruses were nearly absent from the healthy Ulva samples (confirmed by qPCR), they were very abundant in the bleached specimens. Therefore, bleaching in Ulva could be caused by one or a combination of the identified viruses but may also be the result of another causative agent or abiotic stress, with the viruses simply proliferating in already unhealthy seaweed tissue. This study highlights how little we know about the diversity and ecology of seaweed viruses, especially in relation to the health and diseases of the algal host, and emphasizes the need to better characterize the algal virosphere. IMPORTANCE Green seaweeds of the genus Ulva are considered a model system to study microbial interactions with the algal host. Remarkably little is known, however, about viral communities associated with green seaweeds, especially in relation to the health of the host. In this study, we characterized the viral communities associated with healthy and bleached Ulva. Our findings revealed the presence of 20 putative novel viruses associated with Ulva, encompassing both DNA and RNA viruses. The majority of these viruses were found to be especially abundant in bleached Ulva specimens. This is the first step toward understanding the role of viruses in the ecology and aquaculture of this green seaweed.

2.
Mol Ecol ; 32(23): 6260-6277, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35395701

RESUMO

The green seaweed Ulva is a model system to study seaweed-bacteria interactions, but the impact of environmental drivers on the dynamics of these interactions is little understood. In this study, we investigated the stability and variability of the seaweed-associated bacteria across the Atlantic-Baltic Sea salinity gradient. We characterized the bacterial communities of 15 Ulva sensu lato species along 2,000 km of coastline in a total of 481 samples. Our results demonstrate that the Ulva-associated bacterial composition was strongly structured by both salinity and host species (together explaining between 34% and 91% of the variation in the abundance of the different bacterial genera). The largest shift in the bacterial consortia coincided with the horohalinicum (5-8 PSU, known as the transition zone from freshwater to marine conditions). Low-salinity communities especially contained high relative abundances of Luteolibacter, Cyanobium, Pirellula, Lacihabitans and an uncultured Spirosomaceae, whereas high-salinity communities were predominantly enriched in Litorimonas, Leucothrix, Sulfurovum, Algibacter and Dokdonia. We identified a small taxonomic core community (consisting of Paracoccus, Sulfitobacter and an uncultured Rhodobacteraceae), which together contributed to 14% of the reads per sample, on average. Additional core taxa followed a gradient model, as more core taxa were shared between neighbouring salinity ranges than between ranges at opposite ends of the Atlantic-Baltic Sea gradient. Our results contradict earlier statements that Ulva-associated bacterial communities are taxonomically highly variable across individuals and largely stochastically defined. Characteristic bacterial communities associated with distinct salinity regions may therefore facilitate the host's adaptation across the environmental gradient.


Assuntos
Ulva , Humanos , Ulva/genética , Salinidade , Bactérias/genética , Países Bálticos , Água do Mar/microbiologia
3.
J Environ Manage ; 320: 115829, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36056482

RESUMO

Stony corals play a key role in the marine biodiversity of many tropical coastal areas as suppliers of substrate, food and shelter for other reef organisms. Therefore, it is remarkable that coral diversity usually does not play a role in the planning of protected areas in coral reef areas. In the present study we examine how stony coral diversity patterns relate to marine park zonation and the economic value of reefs around St. Eustatius, a small island in the eastern Caribbean, with fisheries and tourism as important sources of income. The marine park contains two no-take reserves. A biodiversity survey was performed at 39 sites, 24 inside the reserves and 15 outside; 22 had a maximum depth >18 m and 17 were shallower. Data on economic value per site were obtained from the literature. Corals were photographed for the verification of identifications made in the field. Coral species richness (n = 49) was highest in the no-take reserves and species composition was mainly affected by maximum depth. No distinct relation is observed between coral diversity and fishery value or total economic value. Based on the outcome of this study we suggest that in future designs of marine park zonation in reef areas, coral diversity should be taken into consideration. This is best served by including reef areas with a continuous depth gradient from shallow flats to deep slopes.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Região do Caribe , Ecossistema , Pesqueiros
4.
Mol Ecol ; 30(13): 3270-3288, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32779312

RESUMO

With the growing anthropogenic pressure on marine ecosystems, the need for efficient monitoring of biodiversity grows stronger. DNA metabarcoding of bulk samples is increasingly being implemented in ecosystem assessments and is more cost-efficient and less time-consuming than monitoring based on morphology. However, before raw sequences are obtained from bulk samples, a profound number of methodological choices must be made. Here, we critically review the recent methods used for metabarcoding of marine bulk samples (including benthic, plankton and diet samples) and indicate how potential biases can be introduced throughout sampling, preprocessing, DNA extraction, marker and primer selection, PCR amplification and sequencing. From a total of 64 studies evaluated, our recommendations for best practices include to (a) consider DESS as a fixative instead of ethanol, (b) use the DNeasy PowerSoil kit for any samples containing traces of sediment, (c) not limit the marker selection to COI only, but preferably include multiple markers for higher taxonomic resolution, (d) avoid touchdown PCR profiles, (e) use a fixed annealing temperature for each primer pair when comparing across studies or institutes, (f) use a minimum of three PCR replicates, and (g) include both negative and positive controls. Although the implementation of DNA metabarcoding still faces several technical complexities, we foresee wide-ranging advances in the near future, including improved bioinformatics for taxonomic assignment, sequencing of longer fragments and the use of whole-genome information. Despite the bulk of biases involved in metabarcoding of bulk samples, if appropriate controls are included along the data generation process, it is clear that DNA metabarcoding provides a valuable tool in ecosystem assessments.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Viés , Biodiversidade , DNA/genética
5.
Trends Microbiol ; 27(7): 635-650, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31056303

RESUMO

When studying the effects of climate change on eukaryotic organisms we often oversee a major ecological process: the interaction with microbes. Eukaryotic hosts and microbes form functional units, termed holobionts, where microbes play crucial roles in host functioning. Environmental stress may disturb these complex mutualistic relations. Macroalgae form the foundation of coastal ecosystems worldwide and provide important ecosystem services - services they could likely not provide without their microbial associates. Still, today we do not know how environmental stress will affect the macroalgal holobiont in an increasingly changing ocean. In this review, we provide a conceptual framework that contributes to understanding the different levels at which the holobiont and environment interact, and we suggest a manipulative experimental approach as a guideline for future research.


Assuntos
Microbiota , Alga Marinha , Microbiologia da Água , Biodiversidade , Mudança Climática , Ecossistema , Meio Ambiente , Interações Hospedeiro-Patógeno , Oceanos e Mares
6.
Ecol Evol ; 9(1): 125-140, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680101

RESUMO

Increased plant biomass is observed in terrestrial systems due to rising levels of atmospheric CO2, but responses of marine macroalgae to CO2 enrichment are unclear. The 200% increase in CO2 by 2100 is predicted to enhance the productivity of fleshy macroalgae that acquire inorganic carbon solely as CO2 (non-carbon dioxide-concentrating mechanism [CCM] species-i.e., species without a carbon dioxide-concentrating mechanism), whereas those that additionally uptake bicarbonate (CCM species) are predicted to respond neutrally or positively depending on their affinity for bicarbonate. Previous studies, however, show that fleshy macroalgae exhibit a broad variety of responses to CO2 enrichment and the underlying mechanisms are largely unknown. This physiological study compared the responses of a CCM species (Lomentaria australis) with a non-CCM species (Craspedocarpus ramentaceus) to CO2 enrichment with regards to growth, net photosynthesis, and biochemistry. Contrary to expectations, there was no enrichment effect for the non-CCM species, whereas the CCM species had a twofold greater growth rate, likely driven by a downregulation of the energetically costly CCM(s). This saved energy was invested into new growth rather than storage lipids and fatty acids. In addition, we conducted a comprehensive literature synthesis to examine the extent to which the growth and photosynthetic responses of fleshy macroalgae to elevated CO2 are related to their carbon acquisition strategies. Findings highlight that the responses of macroalgae to CO2 enrichment cannot be inferred solely from their carbon uptake strategy, and targeted physiological experiments on a wider range of species are needed to better predict responses of macroalgae to future oceanic change.

7.
Food Chem ; 265: 70-77, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29884396

RESUMO

To assess the suitability of southern-Australian macroalgae as potential marine resources for fatty acids (FA), and in particular polyunsaturated fatty acids (PUFA), analysis of 61 species, comprising of 11 Chlorophyta, 17 Phaeophyceae (Ochrophyta) and 33 Rhodophyta, was conducted. Total fatty acid (TFA) concentrations varied considerably (between 0.6 and 7.8 in % of dry weight (DW)) between species, with on average the highest concentrations being in the Phaeophyceae, then the Chlorophyta, and with the Rhodophyta recording the lowest average concentrations. Results revealed significant differences in the fatty acid profiles of the three algal groups. Most species exhibit high proportions of PUFA in their fatty acid profile and a low ratio of n-6/n-3 PUFA. These properties highlight the potential for southern-Australian macroalgae to be used for these FA in food, animal feed and nutraceutical applications.


Assuntos
Ácidos Graxos Ômega-3/análise , Alga Marinha/química , Animais , Austrália , Suplementos Nutricionais/análise , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...