Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 15(7): 522-6, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24178465

RESUMO

Plants were regenerated from excised adventitious roots of the rose rootstock 'Moneyway' via a three step procedure: callus induction, induction of somatic embryos and shoot development. Callus was induced on excised roots after incubation for 4 weeks in the dark on SH-medium (Schenk and Hildebrandt) containing 50 µM 2,4-dichlorophenoxyacetic acid. For embryo induction, calluses were transferred to hormone-free SH-medium and incubated for 8 weeks. The use of Gelrite instead of agar during callus induction stimulated somatic embryogenesis (up to 16% of the explants formed organized structures), whereas the presence of 6-benzylaminopurine in this phase inhibited subsequent regeneration. Yellow solid calluses with embryo-like cotyledons or primordia and friable calluses with embryos were selected, and upon incubation in the light shoots developed. Shoot development was faster and more frequent on solid callus than on friable callus (64% and 21% of the calluses finally formed one or more shoots, respectively). Eleven out of thirteen regenerants developed similarly to control shoots. Finally this regeneration method is compared with other systems for somatic embryogenesis and opportunities for the production of transgenic rose rootstocks and rose cultivare are discussed.

2.
Plant Mol Biol ; 26(1): 51-9, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7948900

RESUMO

Tobacco and tomato plants were generated exhibiting insect resistance due to the introduction of modified cryIA(b) and cryIC genes of Bacillus thuringiensis. Limited modifications at selected regions of the coding sequences of both genes are sufficient to obtain resistance against Spodoptera exigua, Heliothis virescens and Manduca sexta. The criteria used to modify both genes demonstrate that the removal of sequence motifs potentially resulting in premature polyadenylation and transcript instability causes increased insect resistance. The expression of a cryIC-cryIA(b) fusion resulting in protection against S. exigua, H. virescens and M. sexta demonstrates the potential of expressing translational fusions, not only to broaden the insect resistance of transgenic plants, but also to simultaneously employ different gene classes in resistance management strategies.


Assuntos
Bacillus thuringiensis/química , Proteínas de Bactérias/genética , Toxinas Bacterianas , Endotoxinas/genética , Nicotiana/genética , Controle Biológico de Vetores , Plantas Tóxicas , Solanum lycopersicum/genética , Sequência de Aminoácidos , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Proteínas Hemolisinas , Lepidópteros , Manduca , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/biossíntese , Spodoptera
3.
Plant Cell Rep ; 11(1): 20-4, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24213031

RESUMO

As part of our research to develop an alternative system for the transformation of recalcitrant plant species we investigated the use of the male gametophyte as a transformation vector. Therefore the activity of four different promoters (CaMV 35S, LAT52, chiA PA2 and TR2') was analyzed in pollen of a dicot (Nicotiana glutinosa) and a monocot (Lilium longiflorum) plant species. Gene constructs in which the ß-glucuronidase (GUS) gene was placed under the control of these promoters were introduced in pollen using a particle delivery system. No activity of the Cauliflower Mosaic Virus (CaMV) 35S promoter was detected in pollen of both N. glutinosa and L. longiflorum. The promoter of the tomato flower-specific LAT52 gene was highly active in N. glutinosa pollen but remained silent in L. longiflorum pollen. A similar expression pattern was observed for the pollen-specific Chalcone Flavanone Isomerase chiA PA2 promoter originally isolated from petunia. The TR2' mannopine synthase promoter of Agrobacterium tumefaciens, however, was active in pollen from Solanaceous species and also in pollen from the monocot L. longiflorum. This suggests that the TR2' promoter is active in vegetative and sporogenous tissues of dicot and monocot plant species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...