Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Imaging (Bellingham) ; 11(Suppl 1): S12802, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38799269

RESUMO

Purpose: While X-ray photon-counting detectors (PCDs) promise to revolutionize medical imaging, theoretical frameworks to evaluate them are commonly limited to incident fluence rates sufficiently low that the detector response can be considered linear. However, typical clinical operating conditions lead to a significant level of pile-up, invalidating this assumption of a linear response. Here, we present a framework that aims to evaluate PCDs, taking into account their non-linear behavior. Approach: We employ small-signal analysis to study the behavior of PCDs under pile-up conditions. The response is approximated as linear around a given operating point, determined by the incident spectrum and fluence rate. The detector response is subsequently described by the proposed perturbation point spread function (pPSF). We demonstrate this approach using Monte-Carlo simulations of idealized direct- and indirect-conversion PCDs. Results: The pPSFs of two PCDs are calculated. It is then shown how the pPSF allows to determine the sensitivity of the detector signal to an arbitrary lesion. This example illustrates the detrimental influence of pile-up, which may cause non-intuitive effects such as contrast/contrast-to-noise ratio inversion or cancellation between/within energy bins. Conclusions: The proposed framework permits quantifying the spectral and spatial performance of PCDs under clinically realistic conditions at a given operating point. The presented example illustrates why PCDs should not be analyzed assuming that they are linear systems. The framework can, for example, be used to guide the development of PCDs and PCD-based systems. Furthermore, it can be applied to adapt commonly used measures, such as the modulation transfer function, to non-linear PCDs.

2.
Med Phys ; 48(10): 6324-6338, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34169535

RESUMO

PURPOSE: The implementation of photon-counting detectors is widely expected to be the next breakthrough in X-ray computed tomography (CT) instrumentation. A small number of prototype scanners equipped with direct-conversion detectors based on room-temperature semiconductors, such as CdTe and CdZnTe (CZT), are currently installed at medical centers. Here, we investigate the feasibility of using silicon photomultiplier (SiPM)-based scintillation detectors in photon-counting computed tomography (PCCT) scanners, as a potential alternative to CdTe and CZT detectors. METHODS: We introduce a model that allows us to compute the expected energy resolution as well as the expected pulse shape and associated rate capability of SiPM-based PCCT detectors. The model takes into account SiPM saturation and optical crosstalk, because these phenomena may substantially affect the performance of SiPM-based PCCT detectors with sub-mm pixels. We present model validation experiments using a single-pixel detector consisting of a 0.9 × 0.9 × 1.0 mm3 LuAP:Ce scintillation crystal coupled to a 1 × 1 mm2 SiPM. We subsequently use the validated model to compute the expected performance of the fast scintillators LYSO:Ce, LuAP:Ce, and LaBr3 :Ce, coupled to currently available SiPMs, as well as to a more advanced SiPM prototype with improved dynamic range, for sub-mm pixel sizes. RESULTS: The model was found to be in good agreement with the validation experiments, both with respect to energy resolution and pulse shape. It shows how saturation progressively degrades the energy resolution of detectors equipped with currently available SiPMs as the pixel size decreases. Moreover, the expected pulse duration is relatively long (~200 ns) with these SiPMs. However, when LuAP:Ce and LaBr3 :Ce are coupled to the more advanced SiPM prototype, the pulse duration improves to less than 60 ns, which is in the same order of magnitude as pulses from CdTe and CZT detectors. It follows that sufficient rate capability can be achieved with pixel sizes of 400 µm or smaller. Moreover, LaBr3 :Ce detectors can provide an energy resolution of 11.5%-13.5% at 60 keV, comparable to CdTe and CZT detectors. CONCLUSIONS: This work provides first evidence that it may be feasible to develop SiPM-based scintillation detectors for PCCT that can compete with CdTe and CZT detectors in terms of energy resolution and rate capability.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Contagem de Cintilação , Telúrio , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...