Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neuroanat ; 15: 722443, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34949993

RESUMO

The ever-expanding availability and evolution of microscopy tools has enabled ground-breaking discoveries in neurobiology, particularly with respect to the analysis of cell-type density and distribution. Widespread implementation of many of the elegant image processing tools available continues to be impeded by the lack of complete workflows that span from experimental design, labeling techniques, and analysis workflows, to statistical methods and data presentation. Additionally, it is important to consider open science principles (e.g., open-source software and tools, user-friendliness, simplicity, and accessibility). In the present methodological article, we provide a compendium of resources and a FIJI-ImageJ-based workflow aimed at improving the quantification of cell density in mouse brain samples using semi-automated open-science-based methods. Our proposed framework spans from principles and best practices of experimental design, histological and immunofluorescence staining, and microscopy imaging to recommendations for statistical analysis and data presentation. To validate our approach, we quantified neuronal density in the mouse barrel cortex using antibodies against pan-neuronal and interneuron markers. This framework is intended to be simple and yet flexible, such that it can be adapted to suit distinct project needs. The guidelines, tips, and proposed methodology outlined here, will support researchers of wide-ranging experience levels and areas of focus in neuroscience research.

2.
Pharmacol Ther ; 225: 107840, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33753132

RESUMO

Purinergic signaling encompasses the cycle of adenosine 5' triphosphate (ATP) release and its metabolism into nucleotide and nucleoside derivatives, the direct release of nucleosides, and subsequent receptor-triggered downstream intracellular pathways. Since the discovery of nerve terminal and glial ATP release into the neuropil, purinergic signaling has been implicated in the modulation of nervous system development, function, and disease. In this review, we detail our current understanding of the roles of the pannexin 1 (PANX1) ATP-release channel in neuronal development and plasticity, glial signaling, and neuron-glial-immune interactions. We additionally provide an overview of PANX1 structure, activation, and permeability to orientate readers and highlight recent research developments. We identify areas of convergence between PANX1 and purinergic receptor actions. Additional highlights include data on PANX1's participation in the pathophysiology of nervous system developmental, degenerative, and inflammatory disorders. Our aim in combining this knowledge is to facilitate the movement of our current understanding of PANX1 in the context of other nervous system purinergic signaling mechanisms one step closer to clinical translation.


Assuntos
Trifosfato de Adenosina , Conexinas , Proteínas do Tecido Nervoso , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Conexinas/metabolismo , Humanos , Proteínas do Tecido Nervoso/metabolismo , Doenças do Sistema Nervoso , Neurônios
3.
eNeuro ; 7(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32737184

RESUMO

The integration of neurons into networks relies on the formation of dendritic spines. These specialized structures arise from dynamic filopodia-like dendritic protrusions. It was recently reported that cortical neurons lacking the channel protein pannexin 1 (PANX1) exhibited higher dendritic spine densities. Here, we expanded on those findings to investigate, at an earlier developmental time point (with more abundant dendritic protrusions), whether differences in the properties of dendritic protrusion dynamics could contribute to this previously discovered phenomenon. Using a fluorescent membrane tag (mCherry-CD9-10) to visualize dendritic protrusions in developing neurons [at 10 d in vitro (DIV10)], we confirmed that lack of PANX1 led to higher protrusion density, while transient transfection of Panx1 led to decreased protrusion density. To quantify the impact of PANX1 expression on protrusion formation, elimination, and motility, we used live cell imaging in DIV10 neurons (one frame every 5 s for 10 min). We discovered that at DIV10, loss of PANX1 stabilized protrusions. Notably, re-expression of PANX1 in Panx1 knock-out (KO) neurons resulted in a significant increase in protrusion motility and turnover. In summary, these new data revealed that PANX1 could regulate the development of dendritic spines, in part, by controlling dendritic protrusion dynamics.


Assuntos
Espinhas Dendríticas , Células-Tronco Neurais , Neurônios , Pseudópodes
4.
Cell Calcium ; 90: 102253, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32688074

RESUMO

A new study by Yang and colleagues has revealed that TNF-alpha regulates PANX1 levels through an NF-kB-dependent mechanism in human endothelial cells. PANX1 modulates Ca2+ influx contributing to IL-1beta production independent of purinergic signaling. These novel findings expand our understanding of TNF-alpha-mediated upregulation of IL-1beta with implications for responses to tissue injury and infection.


Assuntos
Conexinas/metabolismo , Infecções/metabolismo , Infecções/patologia , Inflamação/metabolismo , Inflamação/patologia , Proteínas do Tecido Nervoso/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamassomos/metabolismo , Modelos Biológicos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...