Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107628, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664600

RESUMO

Human plasmacytoid dendritic cells (pDCs) play a central role in initiating and activating host immune responses during infection. To understand how the transcriptome of pDCs is impacted by HIV-1 infection and exogenous stimulation, we isolated pDCs from healthy controls, people with HIV-1 (PWH) before and during toll-like receptor 9 (TLR9) agonist treatment and performed single-cell (sc)-RNA sequencing. Our cluster analysis revealed four pDC clusters: pDC1, pDC2, cytotoxic-like pDC and an exhausted pDC cluster. The inducible cytotoxic-like pDC cluster is characterized by high expression of both antiviral and cytotoxic genes. Further analyses confirmed that cytotoxic-like pDCs are distinct from NK and T cells. Cell-cell communication analysis also demonstrated that cytotoxic-like pDCs exhibit similar incoming and outgoing cellular communicating signals as other pDCs. Thus, our study presents a detailed transcriptomic atlas of pDCs and provides new perspectives on the mechanisms of regulation and function of cytotoxic-like pDCs.

2.
Cell Rep Med ; 3(10): 100766, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36198308

RESUMO

Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1-CTLA4-) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency.


Assuntos
Infecções por HIV , Humanos , Linfócitos T CD4-Positivos , Antígeno CTLA-4/genética , Receptores Imunológicos , RNA , Linfócitos T , Receptor de Morte Celular Programada 1/metabolismo
3.
Cell Rep ; 40(4): 111148, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858624

RESUMO

Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.


Assuntos
COVID-19 , Interferon Tipo I , Antivirais/farmacologia , Células Dendríticas , Humanos , SARS-CoV-2
4.
EMBO J ; 41(10): e109622, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35178710

RESUMO

Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS-CoV-2 infection is critical for developing treatments for severe COVID-19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID-19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL-6. Using an in vitro stem cell-based human pDC model, we further demonstrate that pDCs, while not supporting SARS-CoV-2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL-6, IL-8, CXCL10) cytokines that protect epithelial cells from de novo SARS-CoV-2 infection. Via targeted deletion of virus-recognition innate immune pathways, we identify TLR7-MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll-like receptor (TLR)2 is responsible for the inflammatory IL-6 response. We further show that SARS-CoV-2 engages the receptor neuropilin-1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL-6 response, suggesting neuropilin-1 as potential therapeutic target for stimulation of TLR7-mediated antiviral protection.


Assuntos
COVID-19 , Células Dendríticas , Receptor 2 Toll-Like , Receptor 7 Toll-Like , COVID-19/imunologia , COVID-19/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Interferon Tipo I/imunologia , Interferon-alfa/imunologia , Interleucina-6/imunologia , Neuropilina-1/imunologia , SARS-CoV-2 , Receptor 2 Toll-Like/imunologia , Receptor 7 Toll-Like/imunologia
5.
Front Microbiol ; 12: 763030, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899645

RESUMO

The chemokine receptor CCR5 is expressed on multiple cell types, including macrophages, dendritic cells, and T cells, and is the major co-receptor used during HIV transmission. Using a standard αCD3/CD28 in vitro stimulation protocol to render CD4+ T cells from PBMCs permissive to HIV infection, we discovered that the percentage of CCR5+ T cells was significantly elevated in CD4+ T cells when stimulated in the presence of peripheral blood mononuclear cells (PBMCs) as compared to when stimulated as purified CD4+ T cells. This indicated that environmental factors unique to the T-PBMCs condition affect surface expression of CCR5 on CD4+ T cells. Conditioned media from αCD3/CD28-stimulated PBMCs induced CCR5 expression in cultures of unstimulated cells. Cytokine profile analysis of these media suggests IL-12 as an inducer of CCR5 expression. Mass cytometric analysis showed that stimulated T-PBMCs exhibited a uniquely activated phenotype compared to T-Pure. In line with increased CCR5 expression and activation status in stimulated T-PBMCs, CD4+ T cells from these cultures were more susceptible to infection by CCR5-tropic HIV-1 as compared with T-Pure cells. These results suggest that in order to increase ex vivo infection rates of blood-derived CD4+ T cells, standard stimulation protocols used in HIV infection studies should implement T-PBMCs or purified CD4+ T cells should be supplemented with IL-12.

6.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658235

RESUMO

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Atovaquona/farmacologia , Humanos , Estados Unidos
7.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473049

RESUMO

Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole-blood HSPCs, and these cells display a pDC phenotype and function. Using GMP-compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways, suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood and lays the foundation for investigating HSPC-pDCs for cell-based immunotherapy.


Assuntos
Ácido Ascórbico/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas , Células-Tronco Hematopoéticas , Células Cultivadas , Meios de Cultura/química , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Imunoterapia
9.
Artigo em Inglês | MEDLINE | ID: mdl-32528903

RESUMO

Dendritic cells (DCs) play a critical role in mediating innate and adaptive immune responses. Since their discovery in the late 1970's, DCs have been recognized as the most potent antigen-presenting cells (APCs). DCs have a superior capacity for acquiring, processing, and presenting antigens to T cells and they express costimulatory or coinhibitory molecules that determine immune activation or anergy. For these reasons, cell-based therapeutic approaches using DCs have been explored in cancer and infectious diseases but with limited success. In humans, DCs are divided into heterogeneous subsets with distinct characteristics. Two major subsets are CD11c+ myeloid (m)DCs and CD11c- plasmacytoid (p)DCs. pDCs are different from mDCs and play an essential role in the innate immune system via the production of type I interferons (IFN). However, pDCs are also able to take-up antigens and effectively cross present them. Given the rarity of pDCs in blood and technical difficulties in obtaining them from human blood samples, the understanding of human pDC biology and their potential in immunotherapeutic approaches (e.g. cell-based vaccines) is limited. However, due to the recent advancements in cell culturing systems that allow for the generation of functional pDCs from CD34+ hematopoietic stem and progenitor cells (HSPC), studying pDCs has become easier. In this mini-review, we hypothesize about the use of pDCs as a cell-based therapy to treat HIV by enhancing anti-HIV-immune responses of the adaptive immune system and enhancing the anti-viral responses of the innate immune system. Additionally, we discuss obstacles to overcome before this approach becomes clinically applicable.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células Dendríticas , Infecções por HIV , Antígeno CD11c , Infecções por HIV/terapia , Humanos , Imunoterapia , Interferon Tipo I
10.
PLoS Pathog ; 16(2): e1008151, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32109259

RESUMO

HIV latency is the major barrier to a cure for people living with HIV (PLWH) on antiretroviral therapy (ART) because the virus persists in long-lived non-proliferating and proliferating latently infected CD4+ T cells. Latently infected CD4+ T cells do not express viral proteins and are therefore not visible to immune mediated clearance. Therefore, identifying interventions that can reverse latency and also enhance immune mediated clearance is of high interest. Interferons (IFNs) have multiple immune enhancing effects and can inhibit HIV replication in activated CD4+ T cells. However, the effects of IFNs on the establishment and reversal of HIV latency is not understood. Using an in vitro model of latency, we demonstrated that plasmacytoid dendritic cells (pDC) inhibit the establishment of HIV latency through secretion of type I IFNα, IFNß and IFNω but not IFNε or type III IFNλ1 and IFNλ3. However, once latency was established, IFNα but no other IFNs were able to efficiently reverse latency in both an in vitro model of latency and CD4+ T cells collected from PLWH on suppressive ART. Binding of IFNα to its receptor expressed on primary CD4+ T cells did not induce activation of the canonical or non-canonical NFκB pathway but did induce phosphorylation of STAT1, 3 and 5 proteins. STAT5 has been previously demonstrated to bind to the HIV long terminal repeat and activate HIV transcription. We demonstrate diverse effects of interferons on HIV latency with type I IFNα; inhibiting the establishment of latency but also reversing HIV latency once latency is established.


Assuntos
Linfócitos T CD4-Positivos , Repetição Terminal Longa de HIV/imunologia , HIV-1/fisiologia , Interferon-alfa/imunologia , Transcrição Gênica/imunologia , Latência Viral/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Células HEK293 , Humanos , NF-kappa B/imunologia , Fatores de Transcrição STAT/imunologia
11.
J Immunol ; 204(5): 1242-1254, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988180

RESUMO

In people living with HIV on antiretroviral therapy, HIV latency is the major barrier to a cure. HIV persists preferentially in CD4+ T cells expressing multiple immune checkpoint (IC) molecules, including programmed death (PD)-1, T cell Ig and mucin domain-containing protein 3 (TIM-3), lymphocyte associated gene 3 (LAG-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). We aimed to determine whether these and other IC molecules have a functional role in maintaining HIV latency and whether blocking IC molecules with Abs reverses HIV latency. Using an in vitro model that establishes latency in both nonproliferating and proliferating human CD4+ T cells, we show that proliferating cells express multiple IC molecules at high levels. Latent infection was enriched in proliferating cells expressing PD-1. In contrast, nonproliferating cells expressed IC molecules at significantly lower levels, but latent infection was enriched in cells expressing PD-1, TIM-3, CTL-associated protein 4 (CTLA-4), or B and T lymphocyte attenuator (BTLA). In the presence of an additional T cell-activating stimulus, staphylococcal enterotoxin B, Abs to CTLA-4 and PD-1 reversed HIV latency in proliferating and nonproliferating CD4+ T cells, respectively. In the absence of staphylococcal enterotoxin B, only the combination of Abs to PD-1, CTLA-4, TIM-3, and TIGIT reversed latency. The potency of latency reversal was significantly higher following combination IC blockade compared with other latency-reversing agents, including vorinostat and bryostatin. Combination IC blockade should be further explored as a strategy to reverse HIV latency.


Assuntos
Anticorpos Monoclonais Murinos/farmacologia , Linfócitos T CD4-Positivos , Proliferação de Células/efeitos dos fármacos , Enterotoxinas/farmacologia , HIV-1/fisiologia , Modelos Imunológicos , Latência Viral , Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Feminino , Células HEK293 , Receptor Celular 2 do Vírus da Hepatite A/antagonistas & inibidores , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/imunologia , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
12.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867307

RESUMO

Sexual HIV-1 transmission occurs primarily in the presence of semen. Although data from macaque studies suggest that CCR5+ CD4+ T cells are initial targets for HIV-1 infection, the impact of semen on T cell CCR5 expression and ligand production remains inconclusive. To determine if semen modulates the lymphocyte CCR5 receptor/ligand axis, primary human T cell CCR5 expression and natural killer (NK) cell anti-HIV-1 antibody-dependent beta chemokine production was assessed following seminal plasma (SP) exposure. Purified T cells produce sufficient quantities of RANTES to result in a significant decline in CCR5bright T cell frequency following 16 h of SP exposure (P = 0.03). Meanwhile, NK cells retain the capacity to produce limited amounts of MIP-1α/MIP-1ß in response to anti-HIV-1 antibody-dependent stimulation (median, 9.5% MIP-1α+ and/or MIP-1ß+), despite the immunosuppressive nature of SP. Although these in vitro experiments suggest that SP-induced CCR5 ligand production results in the loss of surface CCR5 expression on CD4+ T cells, the in vivo implications are unclear. We therefore vaginally exposed five pigtail macaques to SP and found that such exposure resulted in an increase in CCR5+ HIV-1 target cells in three of the animals. The in vivo data support a growing body of evidence suggesting that semen exposure recruits target cells to the vagina that are highly susceptible to HIV-1 infection, which has important implications for HIV-1 transmission and vaccine design.IMPORTANCE The majority of HIV-1 vaccine studies do not take into consideration the impact that semen exposure might have on the mucosal immune system. In this study, we demonstrate that seminal plasma (SP) exposure can alter CCR5 expression on T cells. Importantly, in vitro studies of T cells in culture cannot replicate the conditions under which immune cells might be recruited to the genital mucosa in vivo, leading to potentially erroneous conclusions about the impact of semen on mucosal HIV-1 susceptibility.


Assuntos
Receptores CCR5/metabolismo , Sêmen/imunologia , Sêmen/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas CC/efeitos dos fármacos , Quimiocinas CC/metabolismo , Modelos Animais de Doenças , Feminino , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Células Matadoras Naturais/metabolismo , Macaca , Proteínas Inflamatórias de Macrófagos , Masculino , Receptores CCR5/fisiologia , Linfócitos T
13.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30842324

RESUMO

HIV-1-specific antibody-dependent cellular cytotoxicity (ADCC) antibodies within HIV-1-positive (HIV-1+) individuals predominantly target CD4-induced (CD4i) epitopes on HIV-1 envelope glycoprotein (Env). These CD4i epitopes are usually concealed on the surface of infected cells due to CD4 downregulation by the HIV-1 accessory proteins Nef and Vpu. We hypothesized that early-stage infected cells in the process of downregulating CD4 could be more susceptible to ADCC than late-stage infected cells that have fully downregulated CD4. There was significantly higher binding of antibodies within plasma from HIV-1-infected individuals to early-stage infected cells expressing intermediate levels of CD4 (CD4-intermediate cells) than in late-stage infected cells expressing low levels of CD4 (CD4-low cells). However, we noted that HIV-1-uninfected bystander cells and HIV-1-infected cells, at various stages of downregulating CD4, were all susceptible to NK cell-mediated ADCC. Importantly, we observed that the cytolysis of bystander cells and early infected cells in this culture system was driven by sensitization of target cells by inoculum-derived HIV-1 Env or virions. This phenomenon provided Env to target cells prior to de novo Env expression, resulting in artifactual ADCC measurements. Future studies should take into consideration the inherent caveats of in vitro infection systems and develop improved models to address the potential role for ADCC against cells with nascent HIV-1 infection.IMPORTANCE An increasing body of evidence suggests that ADCC contributes to protection against HIV-1 acquisition and slower HIV-1 disease progression. Targeting cells early during the infection cycle would be most effective in limiting virus production and spread. We hypothesized that there could be a time-dependent susceptibility of HIV-1-infected cells to ADCC in regard to CD4 expression. We observed NK cell-mediated ADCC of HIV-1-infected cells at multiple stages of CD4 downregulation. Importantly, ADCC of early infected cells appeared to be driven by a previously unappreciated problem of soluble Env and virions from the viral inoculum sensitizing uninfected cells to ADCC prior to de novo Env expression. These results have implications for studies examining ADCC against cells with nascent HIV-1 infection.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/fisiologia , Infecções por HIV/imunologia , HIV-1/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Moléculas de Adesão Celular/metabolismo , Regulação para Baixo , Epitopos , Feminino , Anticorpos Anti-HIV/imunologia , Infecções por HIV/metabolismo , Soropositividade para HIV , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo
14.
EBioMedicine ; 42: 97-108, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30824386

RESUMO

BACKGROUND: The latent HIV-1 reservoir in treated patients primarily consists of resting memory CD4+ T cells. Stimulating the T-cell receptor (TCR), which facilitates transition of resting into effector T cells, is the most effective strategy to purge these latently infected cells. Here we supply evidence that TCR-stimulated effector T cells still frequently harbor latent HIV-1. METHODS: Primary HIV-1 infected cells were used in a latency assay with or without dendritic cells (DCs) and reversion of HIV-1 latency was determined, in the presence or absence of specific pathway inhibitors. FINDINGS: Renewed TCR-stimulation or subsequent activation with latency reversing agents (LRAs) did not overcome latency. However, interaction of infected effector cells with DCs triggered further activation of latent HIV-1. When compared to TCR-stimulation only, CD4+ T cells from aviremic patients receiving TCR + DC-stimulation reversed latency more frequently. Such a "one-two punch" strategy seems ideal for purging the reservoir. We determined that DC contact activates the PI3K-Akt-mTOR pathway in CD4+ T cells. INTERPRETATION: This insight could facilitate the development of a novel class of potent LRAs that purge latent HIV beyond levels reached by T-cell activation.


Assuntos
Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Latência Viral , Adulto , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , Humanos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Transdução de Sinais , Latência Viral/imunologia
15.
J Immunol ; 201(5): 1468-1477, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30030324

RESUMO

HIV latency occurs predominantly in long-lived resting CD4+ T cells; however, latent infection also occurs in T cell subsets, including proliferating CD4+ T cells. We compared the establishment and maintenance of latent infection in nonproliferating and proliferating human CD4+ T cells cocultured with syngeneic myeloid dendritic cells (mDC). Resting CD4+ T cells were labeled with the proliferation dye eFluor 670 and cultured alone or with mDC, plasmacytoid dendritic cells, or monocytes in the presence of staphylococcal enterotoxin B (SEB). Cells were cultured for 24 h and infected with CCR5-tropic enhanced GFP (EGFP) reporter HIV. Five days postinfection, nonproductively infected EGFP- CD4+ T cells that were either nonproliferating (eFluor 670hi) or proliferating (eFluor 670lo) were sorted and cultured for an additional 7 d (day 12) with IL-7 and antiretrovirals. At day 5 postinfection, sorted, nonproductively infected T cells were stimulated with anti-CD3/CD28, and induced expression of EGFP was measured to determine the frequency of latent infection. Integrated HIV in these cells was confirmed using quantitative PCR. By these criteria, latent infection was detected at day 5 and 12 in proliferating T cells cocultured with mDC and monocytes but not plasmacytoid dendritic cells, where CD4+ T cells at day 12 were poor. At day 5 postinfection, nonproliferating T cells expressing SEB-specific TCR Vß-17 were enriched in latent infection compared with non-SEB-specific TCR Vß-8.1. Together, these data show that both nonproliferating and proliferating CD4+ T cells can harbor latent infection during SEB-stimulated T cell proliferation and that the establishment of HIV latency in nonproliferating T cells is linked to expression of specific TCR that respond to SEB.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Monócitos/imunologia , Latência Viral/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Enterotoxinas/farmacologia , Infecções por HIV/genética , Infecções por HIV/patologia , Humanos , Monócitos/patologia , Monócitos/virologia , Latência Viral/efeitos dos fármacos , Latência Viral/genética , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética , Replicação Viral/imunologia
16.
AIDS ; 32(11): 1491-1497, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29746296

RESUMO

OBJECTIVE: In HIV-infected individuals on antiretroviral therapy (ART), latent HIV is enriched in CD4 T cells expressing immune checkpoint molecules, in particular programmed cell death-1 (PD-1). We therefore assessed the effect of blocking PD-1 on latency, both in vitro and in vivo. METHODS: HIV latency was established in vitro following coculture of resting CD4+ T cells with myeloid dendritic cells. Expression of PD-1 was quantified by flow cytometry, and latency assessed in sorted PD-1high and PD-1low/-nonproliferating CD4+ memory T cells. The role of PD-1 in the establishment of latency was determined by adding anti-PD-1 (pembrolizumab) to cocultures before and after infection. In addition, a single infusion of anti-PD-1 (nivolumab) was administered to an HIV-infected individual on ART with metastatic melanoma, and cell-associated HIV DNA and RNA, and plasma HIV RNA were quantified. RESULTS: HIV latency was significantly enriched in PD-1high compared with PD-1low/- nonproliferating, CD4 memory T cells. Sorting for an additional immune checkpoint molecule, T-cell immunoglobulin domain and mucin domain-3, in combination with PD-1, further enriched for latency. Blocking PD-1 prior to HIV infection, in vitro, resulted in a modest but significant decrease in latently infected cells in all donors (n = 6). The administration of anti-PD-1 to an HIV-infected individual on ART resulted in a significant increase in cell-associated HIV RNA in CD4 T cells, without significant changes in HIV DNA or plasma HIV RNA, consistent with reversal of HIV latency. CONCLUSION: PD-1 contributes to the establishment and maintenance of HIV latency and should be explored as a target, in combination with other immune checkpoint molecules, to reverse latency.


Assuntos
Linfócitos T CD4-Positivos/virologia , Células Dendríticas/fisiologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Receptor de Morte Celular Programada 1/metabolismo , Latência Viral , Células Cultivadas , Técnicas de Cocultura , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Fatores Imunológicos/administração & dosagem , Nivolumabe/administração & dosagem , RNA Viral/sangue , Carga Viral
17.
Nat Commun ; 8(1): 69, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701733

RESUMO

The imminent threat of viral epidemics and pandemics dictates a need for therapeutic approaches that target viral pathology irrespective of the infecting strain. Reactive oxygen species are ancient processes that protect plants, fungi and animals against invading pathogens including bacteria. However, in mammals reactive oxygen species production paradoxically promotes virus pathogenicity by mechanisms not yet defined. Here we identify that the primary enzymatic source of reactive oxygen species, NOX2 oxidase, is activated by single stranded RNA and DNA viruses in endocytic compartments resulting in endosomal hydrogen peroxide generation, which suppresses antiviral and humoral signaling networks via modification of a unique, highly conserved cysteine residue (Cys98) on Toll-like receptor-7. Accordingly, targeted inhibition of endosomal reactive oxygen species production abrogates influenza A virus pathogenicity. We conclude that endosomal reactive oxygen species promote fundamental molecular mechanisms of viral pathogenicity, and the specific targeting of this pathogenic process with endosomal-targeted reactive oxygen species inhibitors has implications for the treatment of viral disease.Production of reactive oxygen species is an ancient antimicrobial mechanism, but its role in antiviral defense in mammals is unclear. Here, To et al. show that virus infection activates endosomal NOX2 oxidase and restricts TLR7 signaling, and that an endosomal NOX2 inhibitor decreases viral pathogenicity.


Assuntos
Vírus da Influenza A/patogenicidade , NADPH Oxidase 2/metabolismo , Infecções por Orthomyxoviridae/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antivirais/uso terapêutico , Progressão da Doença , Endossomos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Vírus da Influenza A/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2/antagonistas & inibidores , NADPH Oxidase 2/genética , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais , Receptor 7 Toll-Like/metabolismo , Virulência
18.
AIDS ; 29(9): 1003-14, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25768834

RESUMO

BACKGROUND: Latent HIV type I (HIV-1) infections can frequently occur in short-lived proliferating effector T lymphocytes. These latently infected cells could revert into resting T lymphocytes and thereby contribute to the establishment of the long-lived viral reservoir. Monocyte-derived dendritic cells can revert latency in effector T cells in vitro. METHODS: Here we investigated the latency activation properties of tissue-specific immune cells, including a large panel of dendritic cell subsets, to explore in which body compartments effector T cells are most likely to maintain latent HIV-1 provirus and thus potentially contribute to the long-lived reservoir. RESULTS: Our results demonstrate that blood or genital tract dendritic cells do not activate latent provirus in effector T cells, whereas gut or lymphoid dendritic cells induce virus production from latently infected effector T cells in our in-vitro model for latency. Toll-like receptor 3-induced interferon production by myeloid dendritic cells abolished the dendritic cells' ability to induce viral gene expression. CONCLUSIONS: In this study, we show that HIV-1 provirus residing in effector T cells is activated from latency by tissue-specific dendritic cell subsets and other immune cells with remarkably different efficiencies.Our new assay system points to an important, neglected aspect of HIV-1 research: the ability of other immune cells, especially dendritic cells, to differentially affect latency establishment as well as virus reactivation.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Linfócitos T/imunologia , Linfócitos T/virologia , Ativação Viral , Latência Viral , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Provírus/imunologia , Provírus/fisiologia
19.
J Gen Virol ; 95(Pt 4): 968-979, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24447950

RESUMO

HIV-1 transcription depends on cellular transcription factors that bind to sequences in the long-terminal repeat (LTR) promoter. Each HIV-1 subtype has a specific LTR promoter configuration, and minor sequence changes in transcription factor binding sites (TFBSs) or their arrangement can influence transcriptional activity, virus replication and latency properties. Previously, we investigated the proviral latency properties of different HIV-1 subtypes in the SupT1 T cell line. Here, subtype-specific latency and replication properties were studied in primary PHA-activated T lymphocytes. No major differences in latency and replication capacity were measured among the HIV-1 subtypes. Subtype B and AE LTRs were studied in more detail with regard to a putative AP-1 binding site using luciferase reporter constructs. c-Jun, a member of the AP-1 transcription factor family, can activate both subtype B and AE LTRs, but the latter showed a stronger response, reflecting a closer match with the consensus AP-1 binding site. c-Jun overexpression enhanced Tat-mediated transcription of the viral LTR, but in the absence of Tat inhibited basal promoter activity. Thus, c-Jun can exert a positive or negative effect via the AP-1 binding site in the HIV-1 LTR promoter, depending on the presence or absence of Tat.


Assuntos
Regulação Viral da Expressão Gênica , Repetição Terminal Longa de HIV , HIV-1/fisiologia , Interações Hospedeiro-Patógeno , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Células Cultivadas , Humanos , Linfócitos T/virologia , Transcrição Gênica , Latência Viral , Replicação Viral
20.
Curr Opin Virol ; 3(6): 700-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23953324

RESUMO

Treatment of an HIV infected individual with antiretroviral drugs is a successful way to suppress the plasma viral RNA load below the limit of detection (50 copies HIV RNA/ml plasma). This can provide lifelong protection against virus-induced pathogenesis in drug-adherent patients. Unfortunately, even after many years of continuous treatment, the virus persists and the plasma viral load will rebound rapidly when therapy is interrupted. The reason for this rapid rebound is the presence of a long-lived reservoir of latent HIV-1 proviruses that can be reactivated in resting memory T cells. Attempts to eliminate these proviruses have thus far not been successful and this long-lived latent reservoir is therefore considered a major obstacle toward a cure for HIV-1. A detailed understanding of the molecular mechanisms causing HIV latency and knowledge on the establishment of this reservoir may give us clues for future strategies aiming at the eradication of this reservoir.


Assuntos
HIV-1/fisiologia , Linfócitos T/virologia , Latência Viral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...