Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(8): 112822, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471224

RESUMO

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Humanos , Esclerose Lateral Amiotrófica/patologia , DNA Helicases/metabolismo , Grânulos de Estresse , Expansão das Repetições de DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Demência Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , Proteínas de Choque Térmico/metabolismo , RNA/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
2.
Hum Mol Genet ; 32(20): 2966-2980, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37522762

RESUMO

Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.


Assuntos
Esclerose Lateral Amiotrófica , Herpesvirus Humano 8 , Neuroblastoma , Humanos , Herpesvirus Humano 8/metabolismo , Proteômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Biol Direct ; 18(1): 22, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161421

RESUMO

Synapse diversity has been described from different perspectives, ranging from the specific neurotransmitters released, to their diverse biophysical properties and proteome profiles. However, synapse diversity at the transcriptional level has not been systematically identified across all synapse populations in the brain. To quantify and identify specific synaptic features of neuronal cell types we combined the SynGO (Synaptic Gene Ontology) database with single-cell RNA sequencing data of the mouse neocortex. We show that cell types can be discriminated by synaptic genes alone with the same power as all genes. The cell type discriminatory power is not equally distributed across synaptic genes as we could identify functional categories and synaptic compartments with greater cell type specific expression. Synaptic genes, and specific SynGO categories, belonged to three different types of gene modules: gradient expression over all cell types, gradient expression in selected cell types and cell class- or type-specific profiles. This data provides a deeper understanding of synapse diversity in the neocortex and identifies potential markers to selectively identify synapses from specific neuronal populations.


Assuntos
Encéfalo , Redes Reguladoras de Genes , Animais , Camundongos
4.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108794

RESUMO

The pentameric γ-Aminobutyric acid type A receptors (GABAARs) are ligand-gated ion channels that mediate the majority of inhibitory neurotransmission in the brain. In the cerebellum, the two main receptor subtypes are the 2α1/2ß/γ and 2α6/2ß/δ subunits. In the present study, an interaction proteomics workflow was used to reveal additional subtypes that contain both α1 and α6 subunits. Immunoprecipitation of the α6 subunit from mouse brain cerebellar extract co-purified the α1 subunit. In line with this, pre-incubation of the cerebellar extract with anti-α6 antibodies and analysis by blue native gel electrophoresis mass-shifted part of the α1 complexes, indicative of the existence of an α1α6-containing receptor. Subsequent mass spectrometry of the blue native gel showed the α1α6-containing receptor subtype to exist in two main forms, i.e., with or without Neuroligin-2. Immunocytochemistry on a cerebellar granule cell culture revealed co-localization of α6 and α1 in post-synaptic puncta that apposed the presynaptic marker protein Vesicular GABA transporter, indicative of the presence of this synaptic GABAAR subtype.


Assuntos
Receptores de GABA-A , Receptores de GABA , Camundongos , Animais , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Eletroforese em Gel de Poliacrilamida Nativa , Cerebelo/metabolismo , Anticorpos/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168279

RESUMO

Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network that are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Despite various attempts to unravel the complexity of the SQSTM1 protein network, our understanding of the relationship of various components in cellular physiology and disease states continues to evolve. To investigate the SQSTM1 protein interaction network, we performed proximity profile labeling by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including: production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners via defined functional SQSTM1 interacting domains and capture of novel SQSTM1 interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.

6.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429079

RESUMO

The AMPA glutamate receptor (AMPAR) is the major type of synaptic excitatory ionotropic receptor in the brain. AMPARs have four different subunits, GluA1-4 (each encoded by different genes, Gria1, Gria2, Gria3 and Gria4), that can form distinct tetrameric assemblies. The most abundant AMPAR subtypes in the hippocampus are GluA1/2 and GluA2/3 heterotetramers. Each subtype contributes differentially to mechanisms of synaptic plasticity, which may be in part caused by how these receptors are regulated by specific associated proteins. A broad range of AMPAR interacting proteins have been identified, including the well-studied transmembrane AMPA receptor regulatory proteins TARP-γ2 (also known as Stargazin) and TARP-γ8, Cornichon homolog 2 (CNIH-2) and many others. Several interactors were shown to affect biogenesis, AMPAR trafficking, and channel properties, alone or in distinct assemblies, and several revealed preferred binding to specific AMPAR subunits. To date, a systematic specific interactome analysis of the major GluA1/2 and GluA2/3 AMPAR subtypes separately is lacking. To reveal interactors belonging to specific AMPAR subcomplexes, we performed both expression and interaction proteomics on hippocampi of wildtype and Gria1- or Gria3 knock-out mice. Whereas GluA1/2 receptors co-purified TARP-γ8, synapse differentiation-induced protein 4 (SynDIG4, also known as Prrt1) and CNIH-2 with highest abundances, GluA2/3 receptors revealed strongest co-purification of CNIH-2, TARP-γ2, and Noelin1 (or Olfactomedin-1). Further analysis revealed that TARP-γ8-SynDIG4 interact directly and co-assemble into an AMPAR subcomplex especially at synaptic sites. Together, these data provide a framework for further functional analysis into AMPAR subtype specific pathways in health and disease.


Assuntos
Proteômica , Receptores de AMPA , Animais , Camundongos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Camundongos Knockout
7.
Cells ; 10(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202490

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the human population, for which there is currently no cure. The cause of AD is unknown; however, the toxic effects of amyloid-ß (Aß) are believed to play a role in its onset. To investigate this, we examined changes in global protein levels in a hippocampal synaptosome fraction of the Amyloid Precursor Protein swe/Presenelin 1 dE9 (APP/PS1) mouse model of AD at 6 and 12 months of age (moa). Data independent acquisition (DIA), or Sequential Window Acquisition of all THeoretical fragment-ion (SWATH), was used for a quantitative label-free proteomics analysis. We first assessed the usefulness of a recently improved directDIA workflow as an alternative to conventional DIA data analysis using a project-specific spectral library. Subsequently, we applied directDIA to the 6- and 12-moa APP/PS1 datasets and applied the Mass Spectrometry Downstream Analysis Pipeline (MS-DAP) for differential expression analysis and candidate discovery. We observed most regulation at 12-moa, in particular of proteins involved in Aß homeostasis and microglial-dependent processes, like synaptic pruning and the immune response, such as APOE, CLU and C1QA-C. All proteomics data are available via ProteomeXchange with identifier PXD025777.


Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Espectrometria de Massas , Presenilina-1/metabolismo , Proteômica , Doença de Alzheimer , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , Ontologia Genética , Camundongos
8.
Proteomics ; 20(3-4): e1900403, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31984645

RESUMO

The pentameric glycine receptor (GlyR), comprising the α1 and ß subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1ß-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1ß-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1ß-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.


Assuntos
Eletroforese em Gel de Poliacrilamida/métodos , Eletroforese/métodos , Proteoma/análise , Proteômica/métodos , Receptores de Glicina/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de Glicina/genética , Sinapses/metabolismo
9.
Front Cell Neurosci ; 13: 362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440143

RESUMO

Viral vectors are attractive tools to express genes in neurons. Transduction of neurons with a recombinant, replication-deficient Sindbis viral vector is a method of choice for studying the effects of short-term protein overexpression on neuronal function. However, to which extent Sindbis by itself may affect neurons is not fully understood. We assessed effects of neuronal transduction with a Sindbis viral vector on the transcriptome and proteome in organotypic hippocampal slice cultures, and analyzed the electrophysiological properties of individual CA1 neurons, at 24 h and 72 h after viral vector injection. Whereas Sindbis caused substantial gene expression alterations, changes at the protein level were less pronounced. Alterations in transcriptome and proteome were predominantly limited to proteins involved in mediating anti-viral innate immune responses. Sindbis transduction did not affect the intrinsic electrophysiological properties of individual neurons: the membrane potential and neuronal excitability were similar between transduced and non-transduced CA1 neurons up to 72 h after Sindbis injection. Synaptic currents also remained unchanged upon Sindbis transduction, unless slices were massively infected for 72 h. We conclude that Sindbis viral vectors at low transduction rates are suitable for studying short-term effects of a protein of interest on electrophysiological properties of neurons, but not for studies on the regulation of gene expression.

10.
PLoS One ; 8(12): e83345, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391755

RESUMO

BACKGROUND: The choroid plexus epithelium (CPE) is a lobed neuro-epithelial structure that forms the outer blood-brain barrier. The CPE protrudes into the brain ventricles and produces the cerebrospinal fluid (CSF), which is crucial for brain homeostasis. Malfunction of the CPE is possibly implicated in disorders like Alzheimer disease, hydrocephalus or glaucoma. To study human genetic diseases and potential new therapies, mouse models are widely used. This requires a detailed knowledge of similarities and differences in gene expression and functional annotation between the species. The aim of this study is to analyze and compare gene expression and functional annotation of healthy human and mouse CPE. METHODS: We performed 44k Agilent microarray hybridizations with RNA derived from laser dissected healthy human and mouse CPE cells. We functionally annotated and compared the gene expression data of human and mouse CPE using the knowledge database Ingenuity. We searched for common and species specific gene expression patterns and function between human and mouse CPE. We also made a comparison with previously published CPE human and mouse gene expression data. RESULTS: Overall, the human and mouse CPE transcriptomes are very similar. Their major functionalities included epithelial junctions, transport, energy production, neuro-endocrine signaling, as well as immunological, neurological and hematological functions and disorders. The mouse CPE presented two additional functions not found in the human CPE: carbohydrate metabolism and a more extensive list of (neural) developmental functions. We found three genes specifically expressed in the mouse CPE compared to human CPE, being ACE, PON1 and TRIM3 and no human specifically expressed CPE genes compared to mouse CPE. CONCLUSION: Human and mouse CPE transcriptomes are very similar, and display many common functionalities. Nonetheless, we also identified a few genes and pathways which suggest that the CPE between mouse and man differ with respect to transport and metabolic functions.


Assuntos
Plexo Corióideo/metabolismo , Idoso , Animais , Arildialquilfosfatase/genética , Barreira Hematoencefálica , Metabolismo dos Carboidratos/genética , Proteínas de Transporte/genética , Epitélio/metabolismo , Expressão Gênica , Redes Reguladoras de Genes , Humanos , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Animais , Peptidil Dipeptidase A/genética , Especificidade da Espécie , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...