Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36678942

RESUMO

Research on diploid hybrid potato has made fast advances in recent years. In this review we give an overview of the most recent and relevant research outcomes. We define different components needed for a complete hybrid program: inbred line development, hybrid evaluation, cropping systems and variety registration. For each of these components the important research results are discussed and the outcomes and issues that merit further study are identified. We connect fundamental and applied research to application in a breeding program, based on the experiences at the breeding company Solynta. In the concluding remarks, we set hybrid breeding in a societal perspective, and we identify bottlenecks that need to be overcome to allow successful adoption of hybrid potato.

2.
Nat Plants ; 1(4): 15034, 2015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27247034

RESUMO

Potato late blight, caused by the destructive Irish famine pathogen Phytophthora infestans, is a major threat to global food security(1,2). All late blight resistance genes identified to date belong to the coiled-coil, nucleotide-binding, leucine-rich repeat class of intracellular immune receptors(3). However, virulent races of the pathogen quickly evolved to evade recognition by these cytoplasmic immune receptors(4). Here we demonstrate that the receptor-like protein ELR (elicitin response) from the wild potato Solanum microdontum mediates extracellular recognition of the elicitin domain, a molecular pattern that is conserved in Phytophthora species. ELR associates with the immune co-receptor BAK1/SERK3 and mediates broad-spectrum recognition of elicitin proteins from several Phytophthora species, including four diverse elicitins from P. infestans. Transfer of ELR into cultivated potato resulted in enhanced resistance to P. infestans. Pyramiding cell surface pattern recognition receptors with intracellular immune receptors could maximize the potential of generating a broader and potentially more durable resistance to this devastating plant pathogen.


Assuntos
Phytophthora infestans/patogenicidade , Proteínas de Plantas/imunologia , Proteínas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiologia , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Moléculas com Motivos Associados a Patógenos , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/genética
3.
Plant Biotechnol J ; 12(1): 10-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23980842

RESUMO

Late blight caused by the plant pathogenic oomycete Phytophthora infestans is known as one of the most destructive potato diseases. Plant breeders tend to employ NB-LRR-based resistance for introducing genetically controlled late blight resistance in their breeding lines. However, P. infestans is able to rapidly escape this type of resistance, and hence, NB-LRR-based resistance in potato cultivars is often not durable. Previously, we identified a novel type of Phytophthora resistance in Arabidopsis. This resistance is mediated by the cell surface receptor LecRK-I.9, which belongs to the family of L-type lectin receptor kinases. In this study, we report that expression of the Arabidopsis LecRK-I.9 gene in potato and Nicotiana benthamiana results in significantly enhanced late blight resistance. Transcriptional profiling showed strong reduction in salicylic acid (SA)-mediated defence gene expression in LecRK-I.9 transgenic potato lines (TPLs). In contrast, transcripts of two protease inhibitor genes accumulated to extreme high levels, suggesting that LecRK-I.9-mediated late blight resistance is relying on a defence response that includes activation of protease inhibitors. These results demonstrate that the functionality of LecRK-I.9 in Phytophthora resistance is maintained after interfamily transfer to potato and N. benthamiana and suggest that this novel type of LecRK-based resistance can be exploited in breeding strategies to improve durable late blight resistance in Solanaceous crops.


Assuntos
Arabidopsis/metabolismo , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/genética
4.
Plant Biotechnol J ; 11(7): 809-17, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23639032

RESUMO

Marker development for marker-assisted selection in plant breeding is increasingly based on next-generation sequencing (NGS). However, marker development in crops with highly repetitive, complex genomes is still challenging. Here we applied sequence-based genotyping (SBG), which couples AFLP®-based complexity reduction to NGS, for de novo single nucleotide polymorphisms (SNP) marker discovery in and genotyping of a biparental durum wheat population. We identified 9983 putative SNPs in 6372 contigs between the two parents and used these SNPs for genotyping 91 recombinant inbred lines (RILs). Excluding redundant information from multiple SNPs per contig, 2606 (41%) markers were used for integration in a pre-existing framework map, resulting in the integration of 2365 markers over 2607 cM. Of the 2606 markers available for mapping, 91% were integrated in the pre-existing map, containing 708 SSRs, DArT markers, and SNPs from CRoPS technology, with a map-size increase of 492 cM (23%). These results demonstrate the high quality of the discovered SNP markers. With this methodology, it was possible to saturate the map at a final marker density of 0.8 cM/marker. Looking at the binned marker distribution (Figure 2), 63 of the 268 10-cM bins contained only SBG markers, showing that these markers are filling in gaps in the framework map. As to the markers that could not be used for mapping, the main reason was the low sequencing coverage used for genotyping. We conclude that SBG is a valuable tool for efficient, high-throughput and high-quality marker discovery and genotyping for complex genomes such as that of durum wheat.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Triticum/genética , Produtos Agrícolas/genética , Marcadores Genéticos , Genoma de Planta
5.
Mol Biol Rep ; 39(2): 1909-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21667110

RESUMO

Late blight caused by Phytophthora infestans is the most important disease of potato. Many efforts have been made to understand molecular mechanism of the durable resistance to address the challenge raised by rapid evolution of the pathogen. A pathogenesis related protein (PR) gene StPRp27 was previously isolated from the potato leaves challenged by P. infestans. The sequence analysis and expression pattern reveal that StPRp27 may be associated with resistance to P. infestans. In present research, transient expression of StPRp27 in Nicotiana benthamiana enhanced resistance to P. infestans isolates 99189 and PY23 indicating its potential contribution to the disease resistance. These findings were also confirmed by over-expression of StPRp27 in potato cv. E-potato 3, which significantly slowed down the development of the disease after inoculation with a mixture of P. infestans races. Further, silencing of StPRp27 homologous genes in N. benthamiana harboring dominant Phytophthora resistance gene Rpi-blb1 or Rpi-blb2 showed no effects on the resistance triggered by these R genes. Our results suggest that StPRp27 contributes to a race-nonspecific resistance against P. infestans by inhibiting the disease development and has a potential use in selection and breeding for durable resistance to late blight.


Assuntos
Resistência à Doença/genética , Phytophthora infestans , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Solanum tuberosum , Cruzamento/métodos , Primers do DNA/genética , Inativação Gênica , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana
6.
Mol Plant Microbe Interact ; 24(10): 1132-42, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21649512

RESUMO

Massive resistance (R) gene stacking is considered to be one of the most promising approaches to provide durable resistance to potato late blight for both conventional and genetically modified breeding strategies. The R3 complex locus on chromosome XI in potato is an example of natural R gene stacking, because it contains two closely linked R genes (R3a and R3b) with distinct resistance specificities to Phytophthora infestans. Here, we report about the positional cloning of R3b. Both transient and stable transformations of susceptible tobacco and potato plants showed that R3b conferred full resistance to incompatible P. infestans isolates. R3b encodes a coiled-coil nucleotide-binding site leucine-rich repeat protein and exhibits 82% nucleotide identity with R3a located in the same R3 cluster. The R3b gene specifically recognizes Avr3b, a newly identified avirulence factor from P. infestans. R3b does not recognize Avr3a, the corresponding avirulence gene for R3a, showing that, despite their high sequence similarity, R3b and R3a have clearly distinct recognition specificities. In addition to the Rpi-mcd1/Rpi-blb3 locus on chromosome IV, the R3 locus on chromosome XI is the second example of an R-gene cluster with multiple genes recognizing different races of P. infestans.


Assuntos
Genes de Plantas , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Agrobacterium tumefaciens/genética , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clonagem Molecular , DNA de Plantas/genética , Teste de Complementação Genética , Interações Hospedeiro-Patógeno/genética , Família Multigênica , Filogenia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/microbiologia , Transformação Genética , Virulência
7.
Mol Plant Microbe Interact ; 23(9): 1206-16, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20687810

RESUMO

Knowledge on the evolution and distribution of late blight resistance genes is important for a better understanding of the dynamics of these genes in nature. We analyzed the presence and allelic diversity of the late blight resistance genes Rpi-blb1, Rpi-blb2, and Rpi-blb3, originating from Solanum bulbocastanum, in a set of tuber-bearing Solanum species comprising 196 different taxa. The three genes were only present in some Mexican diploid as well as polyploid species closely related to S. bulbocastanum. Sequence analysis of the fragments obtained from the Rpi-blb1 and Rpi-blb3 genes suggests an evolution through recombinations and point mutations. For Rpi-blb2, only sequences identical to the cloned gene were found in S. bulbocastanum accessions, suggesting that it has emerged recently. The three resistance genes occurred in different combinations and frequencies in S. bulbocastanum accessions and their spread is confined to Central America. A selected set of genotypes was tested for their response to the avirulence effectors IPIO-2, Avr-blb2, and Pi-Avr2, which interact with Rpi-blb1, Rpi-blb2, and Rpi-blb3, respectively, as well as by disease assays with a diverse set of isolates. Using this approach, some accessions could be identified that contain novel, as yet unknown, late blight resistance factors in addition to the Rpi-blb1, Rpi-blb2, and Rpi-blb3 genes.


Assuntos
Evolução Biológica , Doenças das Plantas/genética , Solanum/microbiologia , DNA de Plantas , Variação Genética , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase
8.
Mol Plant Microbe Interact ; 22(12): 1535-45, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19888819

RESUMO

A strategy to control the devastating late blight disease is providing potato cultivars with genes that are effective in resistance to a broad spectrum of Phytophthora infestans isolates. Thus far, most late blight resistance (R) genes that were introgressed in potato were quickly defeated. In contrast, the Rpi-blb1 gene originating from Solanum bulbocastanum has performed as an exclusive broad-spectrum R gene for many years. Recently, the RXLR effector family ipiO was identified to contain Avr-blb1. Monitoring the genetic diversity of the ipiO family in a large set of isolates of P. infestans and related species resulted in 16 ipiO variants in three distinct classes. Class I and class II but not class III ipiO variants induce cell death when coinfiltrated with Rpi-blb1 in Nicotiana benthamiana. Class I is highly diverse and is represented in all analyzed P. infestans isolates except two Mexican P. infestans isolates, and these were found virulent on Rpi-blb1 plants. In its C-terminal domain, IPI-O contains a W motif that is essential for triggering Rpi-blb1-mediated cell death and is under positive selection. This study shows that profiling the variation of Avr-blb1 within a P. infestans population is instrumental for predicting the effectiveness of Rpi-blb1-mediated resistance in potato.


Assuntos
Proteínas Fúngicas/metabolismo , Phytophthora infestans/genética , Phytophthora infestans/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Dados de Sequência Molecular , Filogenia , Phytophthora infestans/patogenicidade , Virulência
9.
Nat Genet ; 41(12): 1275-81, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19881527

RESUMO

Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular system.


Assuntos
Cucumis sativus/genética , Genoma de Planta , Elementos de DNA Transponíveis/genética , DNA de Plantas/química , Duplicação Gênica , Genes de Plantas , Imunidade Inata/genética , Dados de Sequência Molecular , Doenças das Plantas/genética , Sequências Repetitivas de Ácido Nucleico , Sintenia
10.
Plant Cell ; 21(9): 2928-47, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19794118

RESUMO

The Irish potato famine pathogen Phytophthora infestans is predicted to secrete hundreds of effector proteins. To address the challenge of assigning biological functions to computationally predicted effector genes, we combined allele mining with high-throughput in planta expression. We developed a library of 62 infection-ready P. infestans RXLR effector clones, obtained using primer pairs corresponding to 32 genes and assigned activities to several of these genes. This approach revealed that 16 of the 62 examined effectors cause phenotypes when expressed inside plant cells. Besides the well-studied AVR3a effector, two additional effectors, PexRD8 and PexRD36(45-1), suppressed the hypersensitive cell death triggered by the elicitin INF1, another secreted protein of P. infestans. One effector, PexRD2, promoted cell death in Nicotiana benthamiana and other solanaceous plants. Finally, two families of effectors induced hypersensitive cell death specifically in the presence of the Solanum bulbocastanum late blight resistance genes Rpi-blb1 and Rpi-blb2, thereby exhibiting the activities expected for Avrblb1 and Avrblb2. The AVRblb2 family was then studied in more detail and found to be highly variable and under diversifying selection in P. infestans. Structure-function experiments indicated that a 34-amino acid region in the C-terminal half of AVRblb2 is sufficient for triggering Rpi-blb2 hypersensitivity and that a single positively selected AVRblb2 residue is critical for recognition by Rpi-blb2.


Assuntos
Proteínas de Algas/metabolismo , Phytophthora infestans/patogenicidade , Proteínas de Plantas/metabolismo , Solanum/genética , Alelos , Sequência de Aminoácidos , Morte Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Imunidade Inata , Dados de Sequência Molecular , Phytophthora infestans/metabolismo , Proteínas de Plantas/genética , Polimorfismo Genético , RNA de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Solanum/imunologia , Solanum/metabolismo , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo
11.
Mol Plant Microbe Interact ; 22(6): 630-41, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19445588

RESUMO

In addition to the resistance to Phytophthora infestans (Rpi) genes Rpi-blb1 and Rpi-blb2, Solanum bulbocastanum appears to harbor Rpi-blb3 located at a major late blight resistance locus on LG IV, which also harbors Rpi-abpt, R2, R2-like, and Rpi-mcd1 in other Solanum spp. Here, we report the cloning and functional analyses of four Rpi genes, using a map-based cloning approach, allele-mining strategy, Gateway technology, and transient complementation assays in Nicotiana benthamiana. Rpi-blb3, Rpi-abpt, R2, and R2-like contain all signature sequences characteristic of leucine zipper nucleotide binding site leucine-rich repeat (LZ-NBS-LRR) proteins, and share amino-acid sequences 34.9% similar to RPP13 from Arabidopsis thaliana. The LRR domains of all four Rpi proteins are highly homologous whereas LZ and NBS domains are more polymorphic, those of R2 being the most divergent. Clear blocks of sequence affiliation between the four functional resistance proteins and those encoded by additional Rpi-blb3 gene homologs suggest exchange of LZ, NBS, and LRR domains, underlining the modular nature of these proteins. All four Rpi genes recognize the recently identified RXLR effector PiAVR2.


Assuntos
Phytophthora infestans , Doenças das Plantas/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Alelos , Sequência de Aminoácidos , Clonagem Molecular , Teste de Complementação Genética , Imunidade Inata/genética , Dados de Sequência Molecular , Família Multigênica , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Plantas Geneticamente Modificadas/microbiologia , Alinhamento de Sequência , Nicotiana/genética
12.
Mol Plant Microbe Interact ; 22(5): 601-15, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19348577

RESUMO

Late blight, caused by the oomycete Phytophthora infestans, is one of the most devastating diseases of potato. Resistance (R) genes from the wild species Solanum demissum have been used by breeders to generate late-blight-resistant cultivars but resistance was soon overcome by the pathogen. A more recent screening of a large number of wild species has led to the identification of novel sources of resistance, many of which are currently being characterized further. Here, we report on the cloning of dominant Rpi genes from S. venturii. Rpi-vnt1.1 and Rpi-vnt1.3 were mapped to chromosome 9 using nucleotide binding site (NBS) profiling. Subsequently, a Tm-2(2)-based allele mining strategy was used to clone both genes. Rpi-vnt1.1 and Rpi-vnt1.3 belong to the coiled-coil NBS leucine-rich repeat (LRR) class of plant R genes and encode predicted peptides of 891 and 905 amino acids (aa), respectively, which share 75% amino acid identity with the Tomato mosaic virus resistance protein Tm-2(2) from tomato. Compared with Rpi-vnt1.1, Rpi-vnt1.3 harbors a 14-aa insertion in the N-terminal region of the protein and two different amino acids in the LRR domain. Despite these differences, Rpi-vnt1.1 and Rpi-vnt1.3 genes have the same resistance spectrum.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Doenças das Plantas/genética , Solanum/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA de Plantas/química , DNA de Plantas/genética , Teste de Complementação Genética , Interações Hospedeiro-Patógeno , Imunidade Inata/genética , Dados de Sequência Molecular , Phytophthora infestans/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Solanum/crescimento & desenvolvimento , Solanum/microbiologia , Nicotiana/genética
13.
Genetics ; 180(3): 1319-28, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791231

RESUMO

Ongoing genomics projects of tomato (Solanum lycopersicum) and potato (S. tuberosum) are providing unique tools for comparative mapping studies in Solanaceae. At the chromosomal level, bacterial artificial chromosomes (BACs) can be positioned on pachytene complements by fluorescence in situ hybridization (FISH) on homeologous chromosomes of related species. Here we present results of such a cross-species multicolor cytogenetic mapping of tomato BACs on potato chromosomes 6 and vice versa. The experiments were performed under low hybridization stringency, while blocking with Cot-100 was essential in suppressing excessive hybridization of repeat signals in both within-species FISH and cross-species FISH of tomato BACs. In the short arm we detected a large paracentric inversion that covers the whole euchromatin part with breakpoints close to the telomeric heterochromatin and at the border of the short arm pericentromere. The long arm BACs revealed no deviation in the colinearity between tomato and potato. Further comparison between tomato cultivars Cherry VFNT and Heinz 1706 revealed colinearity of the tested tomato BACs, whereas one of the six potato clones (RH98-856-18) showed minor putative rearrangements within the inversion. Our results present cross-species multicolor BAC-FISH as a unique tool for comparative genetic studies across Solanum species.


Assuntos
Aberrações Cromossômicas , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Hibridização in Situ Fluorescente/métodos , Mapeamento Físico do Cromossomo/métodos , Solanum lycopersicum/genética , Solanum tuberosum/genética , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Especificidade da Espécie
14.
Theor Appl Genet ; 117(8): 1379-88, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18806994

RESUMO

NBS profiling is a method for the identification of resistance gene analog (RGA) derived fragments. Here we report the use of NBS profiling for the genome wide mapping of RGA loci in potato. NBS profiling analyses on a minimal set of F1 genotypes of the diploid mapping population previously used to generate the ultra dense (UHD) genetic map of potato, allowed us to efficiently map polymorphic RGA fragments relative to 10,000 existing AFLP markers. In total, 34 RGA loci were mapped, of which only 13 contained RGA sequences homologous to RGAs genetically positioned at approximately similar positions in potato or tomato. The remaining RGA loci mapped either at approximate chromosomal regions previously shown to contain RGAs in potato or tomato without sharing homology to these RGAs, or mapped at positions not yet identified as RGA-containing regions. In addition to markers representing RGAs with unknown functions, segregating markers were detected that were closely linked to four functional R genes that segregate in the UHD mapping population. To explore the potential of NBS profiling in RGA transcription analyses, RNA isolated from different tissues was used as template for NBS profiling. Of all the fragments amplified approximately 15% showed putative intensity or absent/present differences between different tissues suggesting putative tissue specific RGA or R gene transcription. Putative absent/present differences between individuals were also found. In addition to being a powerful tool for generating candidate gene markers linked to R gene loci, NBS profiling, when applied to cDNA, can be instrumental in identifying those members of an R gene cluster that are transcribed, and thus putatively functional.


Assuntos
Mapeamento Cromossômico/métodos , Genes de Plantas , Genoma de Planta , Solanum tuberosum/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Plantas/genética , Perfilação da Expressão Gênica , Marcadores Genéticos , Imunidade Inata , Família Multigênica , Doenças das Plantas/genética , Análise de Sequência de DNA , Transcrição Gênica
15.
PLoS One ; 3(8): e2875, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18682852

RESUMO

Potato is the world's fourth largest food crop yet it continues to endure late blight, a devastating disease caused by the Irish famine pathogen Phytophthora infestans. Breeding broad-spectrum disease resistance (R) genes into potato (Solanum tuberosum) is the best strategy for genetically managing late blight but current approaches are slow and inefficient. We used a repertoire of effector genes predicted computationally from the P. infestans genome to accelerate the identification, functional characterization, and cloning of potentially broad-spectrum R genes. An initial set of 54 effectors containing a signal peptide and a RXLR motif was profiled for activation of innate immunity (avirulence or Avr activity) on wild Solanum species and tentative Avr candidates were identified. The RXLR effector family IpiO induced hypersensitive responses (HR) in S. stoloniferum, S. papita and the more distantly related S. bulbocastanum, the source of the R gene Rpi-blb1. Genetic studies with S. stoloniferum showed cosegregation of resistance to P. infestans and response to IpiO. Transient co-expression of IpiO with Rpi-blb1 in a heterologous Nicotiana benthamiana system identified IpiO as Avr-blb1. A candidate gene approach led to the rapid cloning of S. stoloniferum Rpi-sto1 and S. papita Rpi-pta1, which are functionally equivalent to Rpi-blb1. Our findings indicate that effector genomics enables discovery and functional profiling of late blight R genes and Avr genes at an unprecedented rate and promises to accelerate the engineering of late blight resistant potato varieties.


Assuntos
Perfilação da Expressão Gênica , Genômica , Phytophthora/patogenicidade , Doenças das Plantas/genética , Solanum tuberosum/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Imunidade Inata , Phytophthora/genética , Virulência/genética
16.
Theor Appl Genet ; 116(7): 933-43, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18274723

RESUMO

Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved Rpi-blb1 homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum that is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2. Furthermore, Rpi-sto1 and Rpi-plt1 resided at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight resistance gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in EBN 2 tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato varieties by classical breeding.


Assuntos
Genes de Plantas/genética , Doenças das Plantas/genética , Solanum/genética , Segregação de Cromossomos , Cromossomos de Plantas/genética , Frequência do Gene , Imunidade Inata/genética , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Solanum/metabolismo , Solanum/microbiologia
17.
Plant J ; 44(2): 208-22, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16212601

RESUMO

The necessity to develop potato and tomato crops that possess durable resistance against the oomycete pathogen Phytophthora infestans is increasing as more virulent, crop-specialized and pesticide resistant strains of the pathogen are rapidly emerging. Here, we describe the positional cloning of the Solanum bulbocastanum-derived Rpi-blb2 gene, which even when present in a potato background confers broad-spectrum late blight resistance. The Rpi-blb2 locus was initially mapped in several tetraploid backcross populations, derived from highly resistant complex interspecific hybrids designated ABPT (an acronym of the four Solanum species involved:S. acaule, S. bulbocastanum, S. phureja and S. tuberosum), to the same region on chromosome 6 as the Mi-1 gene from tomato, which confers resistance to nematodes, aphids and white flies. Due to suppression of recombination in the tetraploid material, fine mapping was carried out in a diploid intraspecific S. bulbocastanum F1 population. Bacterial artificial chromosome (BAC) libraries, generated from a diploid ABPT-derived clone and from the resistant S. bulbocastanum parent clone, were screened with markers linked to resistance in order to generate a physical map of the Rpi-blb2 locus. Molecular analyses of both ABPT- and S. bulbocastanum-derived BAC clones spanning the Rpi-blb2 locus showed it to harbor at least 15 Mi-1 gene homologs (MiGHs). Of these, five were genetically determined to be candidates for Rpi-blb2. Complementation analyses showed that one ABPT- and one S. bulbocastanum-derived MiGH were able to complement the susceptible phenotype in both S. tuberosum and tomato. Sequence analyses of both genes showed them to be identical. The Rpi-blb2 protein shares 82% sequence identity to the Mi-1 protein. Significant expansion of the Rpi-blb2 locus compared to the Mi-1 locus indicates that intrachromosomal recombination or unequal crossing over has played an important role in the evolution of the Rpi-blb2 locus. The contrasting evolutionary dynamics of the Rpi-blb2/Mi-1 loci in the two related genomes may reflect the opposite evolutionary potentials of the interacting pathogens.


Assuntos
Genes de Plantas/genética , Phytophthora/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/microbiologia , Sequência de Aminoácidos , Cromossomos de Plantas/genética , Clonagem Molecular , Teste de Complementação Genética , Ligação Genética , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Folhas de Planta/microbiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Solanum/metabolismo
18.
Mol Plant Microbe Interact ; 18(7): 722-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16042018

RESUMO

Late blight, caused by Phytophthora infestans, is one of the most devastating diseases in cultivated potato. Breeding of new potato cultivars with high levels of resistance to P. infestans is considered the most durable strategy for future potato cultivation. In this study, we report the identification of a new late-blight resistance (R) locus from the wild potato species Solanum bulbocastanum. Using several different approaches, a high-resolution genetic map of the new locus was generated, delimiting Rpi-blb3 to a 0.93 cM interval on chromosome 4. One amplification fragment length polymorphism marker was identified that cosegregated in 1,396 progeny plants of an intraspecific mapping population with Rpi-blb3. For comparative genomics purposes, markers linked to Rpi-blb3 were tested in mapping populations used to map the three other late-blight R loci Rpi-abpt, R2, and R2-like also to chromosome 4. Marker order and allelic conservation suggest that Rpi-blb3, Rpi-abpt, R2, and R2-like reside in the same R gene cluster on chromosome 4 and likely belong to the same gene family. Our findings provide novel insights in the evolution of R gene clusters conferring late-blight resistance in Solanum spp.


Assuntos
Genes de Plantas , Família Multigênica , Phytophthora/patogenicidade , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Solanum/genética , Solanum/microbiologia , Sequência de Bases , Mapeamento Cromossômico , DNA de Plantas/genética , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo Genético , Especificidade da Espécie
19.
Plant J ; 42(2): 251-61, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15807786

RESUMO

Comparative genomics provides a tool to utilize the exponentially increasing sequence information from model plants to clone agronomically important genes from less studied crop species. Plant disease resistance (R) loci frequently lack synteny between related species of cereals and crucifers but appear to be positionally well conserved in the Solanaceae. In this report, we adopted a local RGA approach using genomic information from the model Solanaceous plant tomato to isolate R3a, a potato gene that confers race-specific resistance to the late blight pathogen Phytophthora infestans. R3a is a member of the R3 complex locus on chromosome 11. Comparative analyses of the R3 complex locus with the corresponding I2 complex locus in tomato suggest that this is an ancient locus involved in plant innate immunity against oomycete and fungal pathogens. However, the R3 complex locus has evolved after divergence from tomato and the locus has experienced a significant expansion in potato without disruption of the flanking colinearity. This expansion has resulted in an increase in the number of R genes and in functional diversification, which has probably been driven by the co-evolutionary history between P. infestans and its host potato. Constitutive expression was observed for the R3a gene, as well as some of its paralogues whose functions remain unknown.


Assuntos
Expressão Gênica/fisiologia , Genômica , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Sequência de Aminoácidos , Evolução Molecular , Marcadores Genéticos , Imunidade Inata/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...