Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 15: 1440294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39175757

RESUMO

Objectives: SARS-CoV-2 infection is associated with a decline in functional outcomes; many patients experience persistent symptoms, while the underlying pathophysiology remains unclear. This study investigated white matter (WM) integrity on brain MRI in hospitalized COVID-19 patients and its associations with clinical outcomes, including long COVID. Materials and methods: We included hospitalized COVID-19 patients and controls from CORONavirus and Ischemic Stroke (CORONIS), an observational cohort study, who underwent MRI-DWI imaging at baseline shortly after discharge (<3 months after positive PCR) and 3 months after baseline scanning. We assessed WM integrity using diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) and performed comparisons between groups and within patients. Clinical assessment was conducted at 3 and 12 months with functional outcomes such as modified Rankin Scale (mRS), Post-COVID-19 Functional Status scale (PCFS), Visual Analogue Scale (VAS), and long COVID, cognitive assessment was conducted by the Modified Telephone Interview for Cognitive Status (TICS-M), and the Hospital Anxiety and Depression Scale (HADS) was used to assess mood disorder. Associations between WM integrity and clinical outcomes were evaluated using logistic regression and linear regression. Results: A total of 49 patients (mean age 59.5 years) showed higher overall peak width of skeletonized mean diffusivity (PSMD) (p = 0.030) and lower neurite density index (NDI) in several WM regions compared with 25 controls at the baseline (p < 0.05; FWE-corrected) but did not remain statistically significant after adjusting for WM hyperintensities. Orientation dispersion index (ODI) increased after 3-month follow-up in several WM regions within patients (p < 0.05), which remained significant after correction for changes in WMH volume. Patients exhibited worse clinical outcomes compared with controls. Low NDI at baseline was associated with worse performance on the Post-COVID-19 Functional Status scale after 12 months (p = 0.018). Conclusion: After adjusting for WMH, hospitalized COVID-19 patients no longer exhibited lower WM integrity compared with controls. WM integrity was generally not associated with clinical assessments as measured shortly after discharge, suggesting that factors other than underlying WM integrity play a role in worse clinical outcomes or long COVID.

2.
Eur J Radiol ; 178: 111644, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084028

RESUMO

RATIONALE AND OBJECTIVES: Various methods exist to perform and post-process perfusion weighted MR imaging in the post-treatment imaging of glioma patients to differentiate tumor progression from tumor-related abnormalities. One of these post-processing methods produces 'fractional tumor burden' maps. This multi-reader study investigated the clinical feasibility of fractional tumor burden maps on real world data from radiological follow-up of high-grade astrocytoma patients. METHODS: Five readers with background in radiology and varying levels of experience were tasked with assessing 30 astrocytoma and glioblastoma patients during one reader session. First, they were provided with a dataset of conventional MRI sequences, including perfusion MRI with regional cerebral blood volume maps. Then the dataset was expanded with a corresponding fractional tumor burden maps. Diagnostic accuracy, duration of post-processing, duration of the assessment of the fractional tumor burden maps, the diagnostic confidence reported by the readers and their diagnoses were recorded. Final diagnosis was determined by clinical and radiological follow-up and/or histopathological data used as gold standard. RESULTS: A mean sensitivity of 83.3 % and mean specificity of 55.1 % was obtained without the use of fractional tumor burden maps, whereas their additional of fractional tumor burden maps resulted in a mean sensitivity and specificity of 79.5 % and 54.2 %, respectively. Diagnostic accuracies with and without fractional tumor burden maps were not significantly different (Z = 0.76, p = 0.450). The median time spent post-processing was 313 s, while the median duration of the assessment of the FTB maps was 19 s. Interestingly, reader confidence increased significantly after adding the fractional tumor burden-maps to the assessment (Z = 454, p < 0.01). CONCLUSIONS: While the use of fractional tumor burden maps does not carry additional value in the radiological follow-up of post-operative high-grade astrocytoma and glioblastoma patients, it does give readers more confidence in their diagnosis.


Assuntos
Neoplasias Encefálicas , Sensibilidade e Especificidade , Carga Tumoral , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Idoso , Angiografia por Ressonância Magnética/métodos , Astrocitoma/diagnóstico por imagem , Reprodutibilidade dos Testes , Interpretação de Imagem Assistida por Computador/métodos , Glioblastoma/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA