Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 13: 117, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636923

RESUMO

BACKGROUND: Mannitol is a C(6) polyol that is used in the food and medical sector as a sweetener and antioxidant, respectively. The sustainable production of mannitol, especially via the direct conversion of CO2 by photosynthetic cyanobacteria, has become increasingly appealing. However, previous work aiming to achieve mannitol production in the marine Synechococcus sp. PCC7002 via heterologous expression of mannitol-1-phosphate-5-dehydrogenase (mtlD) and mannitol-1-phosphatase (m1p, in short: a 'mannitol cassette'), proved to be genetically unstable. In this study, we aim to overcome this genetic instability by conceiving a strategy to stabilize mannitol production using Synechocystis sp. PCC6803 as a model cyanobacterium. RESULTS: Here, we explore the stabilizing effect that mannitol production may have on cells faced with osmotic stress, in the freshwater cyanobacterium Synechocystis sp. PCC6803. We first validated that mannitol can function as a compatible solute in Synechocystis sp. PCC6803, and in derivative strains in which the ability to produce one or both of the native compatible solutes was impaired. Wild-type Synechocystis, complemented with a mannitol cassette, indeed showed increased salt tolerance, which was even more evident in Synechocystis strains in which the ability to synthesize the endogenous compatible solutes was impaired. Next we tested the genetic stability of all these strains with respect to their mannitol productivity, with and without salt stress, during prolonged turbidostat cultivations. The obtained results show that mannitol production under salt stress conditions in the Synechocystis strain that cannot synthesize its endogenous compatible solutes is remarkably stable, while the control strain completely loses this ability in only 6 days. DNA sequencing results of the control groups that lost the ability to synthesize mannitol revealed that multiple types of mutation occurred in the mtlD gene that can explain the disruption of mannitol production. CONCLUSIONS: Mannitol production in freshwater Synechocsytis sp. PCC6803 confers it with increased salt tolerance. Under this strategy, genetically instability which was the major challenge for mannitol production in cyanobacteria is tackled. This paper marks the first report of utilization of the response to salt stress as a factor that can increase the stability of mannitol production in a cyanobacterial cell factory.

2.
Nat Microbiol ; 3(2): 181-188, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29335553

RESUMO

Mycobacterium tuberculosis requires a large number of secreted and exported proteins for its virulence, immune modulation and nutrient uptake. Most of these proteins are transported by the different type VII secretion systems1,2. The most recently evolved type VII secretion system, ESX-5, secretes dozens of substrates belonging to the PE and PPE families, which are named for conserved proline and glutamic acid residues close to the amino terminus3,4. However, the role of these proteins remains largely elusive 1 . Here, we show that mutations of ppe38 completely block the secretion of two large subsets of ESX-5 substrates, that is, PPE-MPTR and PE_PGRS, together comprising >80 proteins. Importantly, hypervirulent clinical M. tuberculosis strains of the Beijing lineage have such a mutation and a concomitant loss of secretion 5 . Restoration of PPE38-dependent secretion partially reverted the hypervirulence phenotype of a Beijing strain, and deletion of ppe38 in moderately virulent M. tuberculosis increased virulence. This indicates that these ESX-5 substrates have an important role in virulence attenuation. Phylogenetic analysis revealed that deletion of ppe38 occurred at the branching point of the 'modern' Beijing sublineage and is shared by Beijing outbreak strains worldwide, suggesting that this deletion may have contributed to their success and global distribution6,7.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Animais , Antígenos de Bactérias/genética , Pequim , DNA Bacteriano/genética , Modelos Animais de Doenças , Deleção de Genes , Humanos , Camundongos Endogâmicos BALB C , Mutação , Mycobacterium tuberculosis/patogenicidade , Fenótipo , Filogenia , Tuberculose Pulmonar/microbiologia , Sistemas de Secreção Tipo VII , Virulência/genética , Fatores de Virulência
3.
PLoS Pathog ; 12(6): e1005696, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280885

RESUMO

Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.


Assuntos
Cápsulas Bacterianas/metabolismo , Infecções por Mycobacterium não Tuberculosas/metabolismo , Mycobacterium marinum/patogenicidade , Sistemas de Secreção Tipo VII/metabolismo , Virulência/fisiologia , Animais , Linhagem Celular , Cromatografia em Camada Fina , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Immunoblotting , Microscopia Eletrônica , Mycobacterium marinum/metabolismo , Fatores de Virulência/metabolismo , Peixe-Zebra
4.
Microb Cell Fact ; 15: 60, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059824

RESUMO

BACKGROUND: Erythritol is a polyol that is used in the food and beverage industry. Due to its non-caloric and non-cariogenic properties, the popularity of this sweetener is increasing. Large scale production of erythritol is currently based on conversion of glucose by selected fungi. In this study, we describe a biotechnological process to produce erythritol from light and CO2, using engineered Synechocystis sp. PCC6803. METHODS: By functionally expressing codon-optimized genes encoding the erythrose-4-phosphate phosphatase TM1254 and the erythrose reductase Gcy1p, or GLD1, this cyanobacterium can directly convert the Calvin cycle intermediate erythrose-4-phosphate into erythritol via a two-step process and release the polyol sugar in the extracellular medium. Further modifications targeted enzyme expression and pathway intermediates. CONCLUSIONS: After several optimization steps, the best strain, SEP024, produced up to 2.1 mM (256 mg/l) erythritol, excreted in the medium.


Assuntos
Eritritol/biossíntese , Engenharia Genética/métodos , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Synechocystis/metabolismo , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Processos Autotróficos , Escherichia coli , Luz , Organismos Geneticamente Modificados , Fotossíntese/genética , Fosfatos Açúcares/metabolismo , Edulcorantes/metabolismo
5.
Appl Environ Microbiol ; 82(4): 1295-1304, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26682849

RESUMO

Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production "outcompetes" consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.


Assuntos
Ácido Láctico/metabolismo , Engenharia Metabólica , Synechocystis/metabolismo , Oxirredutases do Álcool/metabolismo , Carbono/metabolismo , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Leuconostoc/enzimologia , Leuconostoc/genética , Redes e Vias Metabólicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Synechocystis/enzimologia , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
6.
Biotechnol Biofuels ; 8: 111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26246854

RESUMO

BACKGROUND: This study aimed at exploring the molecular physiological consequences of a major redirection of carbon flow in so-called cyanobacterial cell factories: quantitative whole-cell proteomics analyses were carried out on two (14)N-labelled Synechocystis mutant strains, relative to their (15)N-labelled wild-type counterpart. Each mutant strain overproduced one specific commodity product, i.e. ethanol or lactic acid, to such an extent that the majority of the incoming CO2 in the organism was directly converted into the product. RESULTS: In total, 267 proteins have been identified with a significantly up- or down-regulated expression level. In the ethanol-producing mutant, which had the highest relative direct flux of carbon-to-product (>65%), significant up-regulation of several components involved in the initial stages of CO2 fixation for cellular metabolism was detected. Also a general decrease in abundance of the protein synthesizing machinery of the cells and a specific induction of an oxidative stress response were observed in this mutant. In the lactic acid overproducing mutant, that expresses part of the heterologous l-lactate dehydrogenase from a self-replicating plasmid, specific activation of two CRISPR associated proteins, encoded on the endogenous pSYSA plasmid, was observed. RT-qPCR was used to measure, of nine of the genes identified in the proteomics studies, also the adjustment of the corresponding mRNA level. CONCLUSION: The most striking adjustments detected in the proteome of the engineered cells were dependent on the specific product formed, with, e.g. more stress caused by lactic acid- than by ethanol production. Up-regulation of the total capacity for CO2 fixation in the ethanol-producing strain was due to hierarchical- rather than metabolic regulation. Furthermore, plasmid-based expression of heterologous gene(s) may induce genetic instability. For selected, limited, number of genes a striking correlation between the respective mRNA- and the corresponding protein expression level was observed, suggesting that for the expression of these genes regulation takes place primarily at the level of gene transcription.

7.
Biotechnol Biofuels ; 7: 99, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991233

RESUMO

BACKGROUND: Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by "designer microbes." The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make "designer microbes" includes the introduction and overexpression of the product-forming biochemical pathway. For further optimization of product formation, modifications in the surrounding biochemical network of intermediary metabolism have to be made. RESULTS: To improve light-driven L-lactic acid production from CO2, we explored several metabolic engineering design principles, using a previously engineered L-lactic acid producing mutant strain of Synechocystis sp. PCC6803 as the benchmark. These strategies included: (i) increasing the expression level of the relevant product-forming enzyme, lactate dehydrogenase (LDH), for example, via expression from a replicative plasmid; (ii) co-expression of a heterologous pyruvate kinase to increase the flux towards pyruvate; and (iii) knockdown of phosphoenolpyruvate carboxylase to decrease the flux through a competing pathway (from phosphoenolpyruvate to oxaloacetate). In addition, we tested selected lactate dehydrogenases, some of which were further optimized through site-directed mutagenesis to improve the enzyme's affinity for the co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The carbon partitioning between biomass and lactic acid was increased from about 5% to over 50% by strain optimization. CONCLUSION: An efficient photosynthetic microbial cell factory will display a high rate and extent of conversion of substrate (CO2) into product (here: L-lactic acid). In the existing CO2-based cyanobacterial cell factories that have been described in the literature, by far most of the control over product formation resides in the genetically introduced fermentative pathway. Here we show that a strong promoter, in combination with increased gene expression, can take away a significant part of the control of this step in lactic acid production from CO2. Under these premises, modulation of the intracellular precursor, pyruvate, can significantly increase productivity. Additionally, production enhancement is achieved by protein engineering to increase co-factor specificity of the heterologously expressed LDH.

8.
J Biotechnol ; 184: 100-2, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858679

RESUMO

Deletion of pathways for carbon-storage in the cyanobacterium Synechocystis sp. PCC6803 has been suggested as a strategy to increase the size of the available pyruvate pool for the production of (heterologous) chemical commodities. Here we show that deletion of the pathway for glycogen synthesis leads to a twofold increased lactate production rate, under nitrogen-limited conditions, whereas impairment of polyhydroxybutyrate synthesis does not.


Assuntos
Glicogênio/biossíntese , Hidroxibutiratos/metabolismo , Ácido Láctico/metabolismo , Fotossíntese/genética , Sequestro de Carbono/genética , Glicogênio/genética , Engenharia Metabólica , Mutação , Nitrogênio/metabolismo , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Synechocystis/metabolismo
9.
Cell Microbiol ; 16(2): 280-95, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24119166

RESUMO

The pathogenicity of mycobacteria is closely associated with their ability to export virulence factors. For this purpose, mycobacteria possess different protein secretion systems, including the accessory Sec translocation pathway, SecA2. Although this pathway is associated with intracellular survival and virulence, the SecA2-dependent effector proteins remain largely undefined. In this work, we studied a Mycobacterium marinum secA2 mutant with an impaired capacity to initiate granuloma formation in zebrafish embryos. By comparing the proteomic profile of cell envelope fractions from the secA2 mutant with wild type M. marinum, we identified putative SecA2-dependent substrates. Immunoblotting procedures confirmed SecA2-dependent membrane localization for several of these proteins, including the virulence factor protein kinase G (PknG). Interestingly, phenotypical defects of the secA2 mutant are similar to those described for ΔpknG, including phagosomal maturation. Overexpression of PknG in the secA2 mutant restored its localization to the cell envelope. Importantly, PknG-overexpression also partially restored the virulence of the secA2 mutant, as indicated by enhanced infectivity in zebrafish embryos and restored inhibition of phagosomal maturation. These results suggest that SecA2-dependent membrane localization of PknG is an important determinant for M. marinum virulence.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium marinum/metabolismo , Fatores de Virulência/metabolismo , Animais , Elementos de DNA Transponíveis , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Immunoblotting , Mutagênese Insercional , Infecções por Mycobacterium/microbiologia , Mycobacterium marinum/patogenicidade , Especificidade por Substrato , Peixe-Zebra
10.
J Bacteriol ; 195(9): 2050-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23457249

RESUMO

A striking characteristic of mycobacteria is the presence of an unusual outer membrane which forms a thick permeability barrier and provides resistance to many antibiotics. Although specialized proteins must reside in this layer, only few mycolate outer membrane (MOM) proteins have been identified to date. Their discovery is complicated by difficulties in obtaining good separation of mycobacterial inner and outer membranes. During our efforts to identify novel mycobacterial outer membrane proteins (MOMPs), we discovered that we can enrich for MOMPs using differential solubilization of mycobacterial cell envelopes. Subsequently, these different fractions were analyzed by nano liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). This proteomic analysis confirmed that our marker proteins for inner membrane and MOM were found in their expected fractions and revealed a few interesting candidate MOMPs. A number of these putative MOMPs were further analyzed for their expression and localization in the cell envelope. One identified MOMP, MMAR_0617 of Mycobacterium marinum, was purified and demonstrated to form a large oligomeric complex. Importantly, this protein showed a clear single-channel conductance of 0.8 ± 0.1 ns upon reconstitution into artificial planar lipid bilayers. The most surprising feature of MMAR_0617 is a long C-terminal threonine-rich domain with extensive modifications. In summary, we have identified a novel mycobacterial outer membrane porin with unusual properties.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Mycobacterium marinum/metabolismo , Porinas/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/isolamento & purificação , Membrana Celular/química , Membrana Celular/genética , Detergentes/química , Dados de Sequência Molecular , Mycobacterium marinum/química , Mycobacterium marinum/genética , Porinas/química , Porinas/genética , Porinas/isolamento & purificação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Treonina/análise
11.
Curr Top Microbiol Immunol ; 374: 109-34, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23239236

RESUMO

Protein secretion is an essential determinant of mycobacterial virulence. Mycobacterium tuberculosis has a unique cell envelope consisting of two lipid bilayers, which requires dedicated protein secretion pathways. The conserved general Sec and Tat translocation systems are responsible for protein transport across the inner membrane and are both essential. Additionally, the accessory Sec pathway specifically contributes to virulence. How transport of Sec/Tat substrates across the outer membrane is accomplished is currently an enigma. In addition to these pathways, M. tuberculosis also developed specialized secretion systems for protein transport across both membranes, the type VII or ESX secretion systems. Here, we discuss our current knowledge about the mechanisms and substrates of these different protein translocation systems and their role in mycobacterial physiology and virulence.


Assuntos
Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Mycobacterium tuberculosis/metabolismo , Cápsulas Bacterianas/química , Membrana Celular/química , Humanos , Ferro/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/patogenicidade , Transporte Proteico , Tuberculose Pulmonar/microbiologia , Virulência
12.
J Biol Chem ; 287(38): 31939-47, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22843727

RESUMO

Mycobacteria use the dedicated type VII protein secretion systems ESX-1 and ESX-5 to secrete virulence factors across their highly hydrophobic cell envelope. The substrates of these systems include the large mycobacterial PE and PPE protein families, which are named after their characteristic Pro-Glu and Pro-Pro-Glu motifs. Pathogenic mycobacteria secrete large numbers of PE/PPE proteins via the major export pathway, ESX-5. In addition, a few PE/PPE proteins have been shown to be exported by ESX-1. It is not known how ESX-1 and ESX-5 recognize their cognate PE/PPE substrates. In this work, we investigated the function of the cytosolic protein EspG(5), which is essential for ESX-5-mediated secretion in Mycobacterium marinum, but for which the role in secretion is not known. By performing protein co-purifications, we show that EspG(5) interacts with several PPE proteins and a PE/PPE complex that is secreted by ESX-5, but not with the unrelated ESX-5 substrate EsxN or with PE/PPE proteins secreted by ESX-1. Conversely, the ESX-1 paralogue EspG(1) interacted with a PE/PPE couple secreted by ESX-1, but not with PE/PPE substrates of ESX-5. Furthermore, structural analysis of the complex formed by EspG(5) and PE/PPE indicates that these proteins interact in a 1:1:1 ratio. In conclusion, our study shows that EspG(5) and EspG(1) interact specifically with PE/PPE proteins that are secreted via their own ESX systems and suggests that EspG proteins are specific chaperones for the type VII pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Mycobacterium marinum/enzimologia , Clonagem Molecular , Citosol/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Espectrometria de Massas/métodos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Mycobacterium marinum/metabolismo , Níquel/química , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Via Secretória , Espectrometria de Massas em Tandem/métodos
13.
J Biol Chem ; 287(24): 20417-29, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22505711

RESUMO

The mycobacterial cell envelope is characterized by the presence of a highly impermeable second membrane, which is composed of mycolic acids intercalated with different unusual free lipids, such as lipooligosaccharides (LOS). Transport across this cell envelope requires a dedicated secretion system for extracellular proteins, such as PE_PGRS proteins, which are specific mycobacterial proteins with polymorphic GC-rich sequence (PGRS). In this study, we set out to identify novel components involved in the secretion of PE_PGRS proteins by screening Mycobacterium marinum transposon mutants for secretion defects. Interestingly, most mutants were not affected in secretion but in the release of PE_PGRS proteins from the cell surface. These mutants had insertions in a gene cluster associated with LOS biosynthesis. Lipid analysis of these mutants revealed a role at different stages of LOS biosynthesis for 10 novel genes. Furthermore, we show that regulatory protein WhiB4 is involved in LOS biosynthesis. The absence of the most extended LOS molecule, i.e. LOS-IV, and a concomitant accumulation of LOS-III was already sufficient to reduce the release of PE_PGRS proteins from the mycobacterial cell surface. A similar effect was observed for major surface protein EspE. These results show that the attachment of surface proteins is strongly influenced by the glycolipid composition of the mycobacterial cell envelope. Finally, we tested the virulence of a LOS-IV-deficient mutant in our zebrafish embryo infection model. This mutant showed a marked increase in virulence as compared with the wild-type strain, suggesting that LOS-IV plays a role in the modulation of mycobacterial virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Mycobacterium marinum/metabolismo , Animais , Proteínas de Bactérias/genética , Transporte Biológico Ativo/fisiologia , Elementos de DNA Transponíveis/fisiologia , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Lipopolissacarídeos/genética , Mutação , Infecções por Mycobacterium não Tuberculosas/genética , Infecções por Mycobacterium não Tuberculosas/metabolismo , Infecções por Mycobacterium não Tuberculosas/veterinária , Mycobacterium marinum/genética , Peixe-Zebra/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...