Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 261: 207-214, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-28610996

RESUMO

Nowadays, computational approaches are an integral part of life science research. Problems related to interpretation of experimental results, data analysis, or visualization tasks highly benefit from the achievements of the digital era. Simulation methods facilitate predictions of physicochemical properties and can assist in understanding macromolecular phenomena. Here, we will give an overview of the methods developed in our group that aim at supporting researchers from all life science areas. Based on state-of-the-art approaches from structural bioinformatics and cheminformatics, we provide software covering a wide range of research questions. Our all-in-one web service platform ProteinsPlus (http://proteins.plus) offers solutions for pocket and druggability prediction, hydrogen placement, structure quality assessment, ensemble generation, protein-protein interaction classification, and 2D-interaction visualization. Additionally, we provide a software package that contains tools targeting cheminformatics problems like file format conversion, molecule data set processing, SMARTS editing, fragment space enumeration, and ligand-based virtual screening. Furthermore, it also includes structural bioinformatics solutions for inverse screening, binding site alignment, and searching interaction patterns across structure libraries. The software package is available at http://software.zbh.uni-hamburg.de.


Assuntos
Biologia Computacional , Internet , Software , Bases de Dados de Proteínas
2.
J Comput Aided Mol Des ; 31(4): 335-347, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28315995

RESUMO

Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise ).


Assuntos
Descoberta de Drogas/métodos , Software , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Proteínas/química , Proteínas/metabolismo
3.
J Comput Aided Mol Des ; 30(8): 583-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27565795

RESUMO

Ligand-based virtual screening is a well established method to find new lead molecules in todays drug discovery process. In order to be applicable in day to day practice, such methods have to face multiple challenges. The most important part is the reliability of the results, which can be shown and compared in retrospective studies. Furthermore, in the case of 3D methods, they need to provide biologically relevant molecular alignments of the ligands, that can be further investigated by a medicinal chemist. Last but not least, they have to be able to screen large databases in reasonable time. Many algorithms for ligand-based virtual screening have been proposed in the past, most of them based on pairwise comparisons. Here, a new method is introduced called mRAISE. Based on structural alignments, it uses a descriptor-based bitmap search engine (RAISE) to achieve efficiency. Alignments created on the fly by the search engine get evaluated with an independent shape-based scoring function also used for ranking of compounds. The correct ranking as well as the alignment quality of the method are evaluated and compared to other state of the art methods. On the commonly used Directory of Useful Decoys dataset mRAISE achieves an average area under the ROC curve of 0.76, an average enrichment factor at 1 % of 20.2 and an average hit rate at 1 % of 55.5. With these results, mRAISE is always among the top performing methods with available data for comparison. To access the quality of the alignments calculated by ligand-based virtual screening methods, we introduce a new dataset containing 180 prealigned ligands for 11 diverse targets. Within the top ten ranked conformations, the alignment closest to X-ray structure calculated with mRAISE has a root-mean-square deviation of less than 2.0 Å for 80.8 % of alignment pairs and achieves a median of less than 2.0 Å for eight of the 11 cases. The dataset used to rate the quality of the calculated alignments is freely available at http://www.zbh.uni-hamburg.de/mraise-dataset.html . The table of all PDB codes contained in the ensembles can be found in the supplementary material. The software tool mRAISE is freely available for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise ).


Assuntos
Descoberta de Drogas , Software , Algoritmos , Sítios de Ligação , Bases de Dados de Compostos Químicos , Bases de Dados de Proteínas , Descoberta de Drogas/métodos , Humanos , Ligantes , Modelos Moleculares , Proteínas/metabolismo
4.
J Chem Inf Model ; 53(2): 411-22, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23390978

RESUMO

We present TrixP, a new index-based method for fast protein binding site comparison and function prediction. TrixP determines binding site similarities based on the comparison of descriptors that encode pharmacophoric and spatial features. Therefore, it adopts the efficient core components of TrixX, a structure-based virtual screening technology for large compound libraries. TrixP expands this technology by new components in order to allow a screening of protein libraries. TrixP accounts for the inherent flexibility of proteins employing a partial shape matching routine. After the identification of structures with matching pharmacophoric features and geometric shape, TrixP superimposes the binding sites and, finally, assesses their similarity according to the fit of pharmacophoric properties. TrixP is able to find analogies between closely and distantly related binding sites. Recovery rates of 81.8% for similar binding site pairs, assisted by rejecting rates of 99.5% for dissimilar pairs on a test data set containing 1331 pairs, confirm this ability. TrixP exclusively identifies members of the same protein family on top ranking positions out of a library consisting of 9802 binding sites. Furthermore, 30 predicted kinase binding sites can almost perfectly be classified into their known subfamilies.


Assuntos
Proteínas/química , Algoritmos , Animais , Sítios de Ligação , Bases de Dados de Proteínas , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...