Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Conserv Physiol ; 11(1): coad092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076342

RESUMO

Rapid and accelerating warming of salmon habitat has the potential to lower productivity of Pacific salmon (Oncorhynchus species) populations. Heat stress biomarkers can indicate where warming is most likely affecting fish populations; however, we often lack clear classifications that separate individuals with and without heat stress needed to make these tools operational. We conducted a heat exposure experiment with trials lasting 12 or 36 h using juvenile Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) to validate heat stress biomarkers in white muscle. Following habituation to 13°C, individuals were exposed to water temperatures that increased to 15°C, 17°C, 19°C, 21°C or 23°C. Heat shock protein 70 abundance (HSP70 measured by ELISA) and transcription of 13 genes (mRNA measured by qPCR) including three heat shock protein genes (hsp70, hsp90, hsp27) were measured. A distinct heat stress response was apparent by 21°C in juvenile Chinook salmon and 23°C in juvenile coho salmon using HSP70. A threshold for heat stress classification in Chinook salmon of > 2 ng HSP70 mg.1 total protein identified heat stress in 100% of 21 and 23°C treated individuals compared to 4% in cooler treatments. For coho salmon, > 3 ng HSP70 mg.1 total protein identified heat stress in 100% of 23°C treated individuals compared to 4% in cooler treatments. Transcription from a panel of genes separated individuals between cooler and stressful temperature experiences (≥21°C for Chinook salmon and ≥23°C for coho salmon) with ~ 85% correct classification. Our findings indicate that juvenile Chinook salmon were more temperature-sensitive than juvenile coho salmon and support the use of a HSP70 threshold sampled from muscle for assessing heat stress in individual wild Pacific salmon with an option for non-lethal biopsies for spawning adults.

2.
Glob Chang Biol ; 29(7): 1822-1838, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36565055

RESUMO

Borealization is a type of community reorganization where Arctic specialists are replaced by species with more boreal distributions in response to climatic warming. The process of borealization is often exemplified by the northward range expansions and subsequent proliferation of boreal species on the Pacific and Atlantic inflow Arctic shelves (i.e., Bering/Chukchi and Barents seas, respectively). But the circumpolar nearshore distribution of Arctic-boreal fishes that predates recent warming suggests borealization is possible beyond inflow shelves. To examine this question, we revisited two nearshore lagoons in the eastern Alaska Beaufort Sea (Kaktovik and Jago lagoons, Arctic National Wildlife Refuge, Alaska, USA), a High Arctic interior shelf. We compared summer fish species assemblage, catch rate, and size distribution among three periods that spanned a 30-year record (baseline conditions, 1988-1991; moderate sea ice decline, 2003-2005; rapid sea ice decline, 2017-2019). Fish assemblages differed among periods in both lagoons, consistent with borealization. Among Arctic specialists, a clear decline in fourhorn sculpin (Myoxocephalus quadricornis, Kanayuq in Iñupiaq) occurred in both lagoons with 86%-90% lower catch rates compared with the baseline period. Among the Arctic-boreal species, a dramatic 18- to 19-fold increase in saffron cod (Eleginus gracilis, Uugaq) occurred in both lagoons. Fish size (length) distributions demonstrated increases in the proportion of larger fish for most species examined, consistent with increasing survival and addition of age-classes. These field data illustrate borealization of an Arctic nearshore fish community during a period of rapid warming. Our results agree with predictions that Arctic-boreal fishes (e.g., saffron cod) are well positioned to exploit the changing Arctic ecosystem. Another Arctic-boreal species, Dolly Varden (Salvelinus malma, Iqalukpik), appear to have already responded to warming by shifting from Arctic nearshore to shelf waters. More broadly, our findings suggest that areas of borealization could be widespread in the circumpolar nearshore.


Assuntos
Gadiformes , Perciformes , Animais , Ecossistema , Regiões Árticas , Peixes , Alaska , Oceanos e Mares
3.
Glob Chang Biol ; 27(9): 1859-1878, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33577102

RESUMO

During the Pacific marine heatwave of 2014-2016, abundance and quality of several key forage fish species in the Gulf of Alaska were simultaneously reduced throughout the system. Capelin (Mallotus catervarius), sand lance (Ammodytes personatus), and herring (Clupea pallasii) populations were at historically low levels, and within this community abrupt declines in portfolio effects identify trophic instability at the onset of the heatwave. Although compensatory changes in age structure, size, growth or energy content of forage fish were observed to varying degrees among all these forage fish, none were able to fully mitigate adverse impacts of the heatwave, which likely included both top-down and bottom-up forcing. Notably, changes to the demographic structure of forage fish suggested size-selective removals typical of top-down regulation. At the same time, changes in zooplankton communities may have driven bottom-up regulation as copepod community structure shifted toward smaller, warm water species, and euphausiid biomass was reduced owing to the loss of cold-water species. Mediated by these impacts on the forage fish community, an unprecedented disruption of the normal pelagic food web was signaled by higher trophic level disruptions during 2015-2016, when seabirds, marine mammals, and groundfish experienced shifts in distribution, mass mortalities, and reproductive failures. Unlike decadal-scale variability underlying ecosystem regime shifts, the heatwave appeared to temporarily overwhelm the ability of the forage fish community to buffer against changes imposed by warm water anomalies, thereby eliminating any ecological advantages that may have accrued from having a suite of coexisting forage species with differing life-history compensations.


Assuntos
Ecossistema , Peixes , Alaska , Animais , Cadeia Alimentar , Zooplâncton
4.
Conserv Physiol ; 8(1): coaa074, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963788

RESUMO

Manipulative experiments provide stronger evidence for identifying cause-and-effect relationships than correlative studies, but protocols for implementing temperature manipulations are lacking for large species in remote settings. We developed an experimental protocol for holding adult Chinook salmon (Oncorhynchus tshawytscha) and exposing them to elevated temperature treatments. The goal of the experimental protocol was to validate heat stress biomarkers by increasing river water temperature from ambient (~14°C) to a treatment temperature of 18°C or 21°C and then maintain the treatment temperature over 4 hours within a range of ±1.0°C. Our protocol resulted in a mean rate of temperature rise of 3.71°C h-1 (SD = 1.31) to treatment temperatures and mean holding temperatures of 18.0°C (SD = 0.2) and 21.0°C (SD = 0.2) in the low- and high-heat treatments, respectively. Our work demonstrated that manipulative experiments with large, mobile study species can be successfully developed in remote locations to examine thermal stress.

5.
Conserv Physiol ; 8(1): coaa084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34512988

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) declines are widespread and may be attributed, at least in part, to warming river temperatures. Water temperatures in the Yukon River and tributaries often exceed 18°C, a threshold commonly associated with heat stress and elevated mortality in Pacific salmon. Untangling the complex web of direct and indirect physiological effects of heat stress on salmon is difficult in a natural setting with innumerable system challenges but is necessary to increase our understanding of both lethal and sublethal impacts of heat stress on populations. The goal of this study was to characterize the cellular stress response in multiple Chinook salmon tissues after acute elevated temperature challenges. We conducted a controlled 4-hour temperature exposure (control, 18°C and 21°C) experiment on the bank of the Yukon River followed by gene expression (GE) profiling using a 3'-Tag-RNA-Seq protocol. The full transcriptome was analysed for 22 Chinook salmon in muscle, gill and liver tissue. Both the 21°C and 18°C treatments induced greater activity in genes associated with protein folding (e.g. HSP70, HSP90 mRNA) processes in all tissues. Global GE patterns indicate that transcriptomic responses to heat stress were highly tissue-specific, underscoring the importance of analyzing multiple tissues for determination of physiological effect. Primary superclusters (i.e. groupings of loosely related terms) of altered biological processes were identified in each tissue type, including regulation of DNA damage response (gill), regulation by host of viral transcription (liver) and regulation of the force of heart contraction (muscle) in the 21°C treatment. This study provides insight into mechanisms potentially affecting adult Chinook salmon as they encounter warm water during their spawning migration in the Yukon River and suggests that both basic and more specialized cellular functions may be disrupted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...