Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 12(43): 14606-14617, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881013

RESUMO

The worrisome development and spread of multidrug-resistant bacteria demands new antibacterial agents with strong bioactivities particularly against Gram-negative bacteria. Albicidins were recently structurally characterized as highly active antibacterial natural products from the bacterium Xanthomonas albilineans. Albicidin, which effectively targets the bacterial DNA-gyrase, is a lipophilic hexapeptide mostly consisting of para amino benzoic acid units and only one α-amino acid. In this study, we report on the design and synthesis of new albicidins, containing N-atoms on each of the 5 different phenyl rings. We systematically introduced N-atoms into the aromatic backbone to monitor intramolecular H-bonds and for one derivative correlated them with a significant enhancement of the antibacterial activity and activity spectrum, particularly also towards Gram-positive bacteria. In parallel we conducted DFT calculations to find the most stable conformation of each derivative. A drastic angle-change was observed for the lead compound and shows a preferred planarity through H-bonding with the introduced N-atom at the D-fragment of albicidin. Finally, we went to the next level and conducted the first in vivo experiments with an albicidin analogue. Our lead compound was evaluated in two different mouse experiments: In the first we show a promising PK profile and the absence of toxicity and in the second very good efficiency and reduction of the bacterial titre in an E. coli infection model with FQ-resistant clinically relevant strains. These results qualify albicidins as active antibacterial substances with the potential to be developed as a drug for treatment of infections caused by Gram-negative and Gram-positive bacteria.

2.
Chemistry ; 25(28): 6955-6962, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-30816591

RESUMO

The E. coli siderophore enterobactin, the strongest FeIII chelator known to date, forms hexacoordinate complexes with SiIV , GeIV , and TiIV . Synthetic protocols have been developed to prepare non-symmetric enterobactin analogues with varying denticities. Various benzoic acid residues were coupled to the macrocyclic lactone to afford a diverse library of ligands. These enterobactin analogues were bound to SiIV , GeIV , and TiIV , and the complexes were investigated through experimental and computational techniques. The binding behavior of the synthesized chelators enabled assessment of the contribution of each of the phenolic hydroxy groups in enterobactin to metal-ion complexation. It was found that at least four O-donors are needed for enterobactin derivatives to act as metal binders. Density functional theory calculations indicate that the strong binding behavior of enterobactin can be ascribed to a diminished translational entropy penalty, a common feature of the chelate effect, coupled with the structural arrangement of the three catechol moieties, which allows the triseryl base to be installed without distorting the preferred local metal-binding geometry of the catecholate ligands.

3.
Nat Commun ; 9(1): 3095, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082794

RESUMO

The worldwide emergence of antibiotic resistance poses a serious threat to human health. A molecular understanding of resistance strategies employed by bacteria is obligatory to generate less-susceptible antibiotics. Albicidin is a highly potent antibacterial compound synthesized by the plant-pathogenic bacterium Xanthomonas albilineans. The drug-binding protein AlbA confers albicidin resistance to Klebsiella oxytoca. Here we show that AlbA binds albicidin with low nanomolar affinity resulting in full inhibition of its antibacterial activity. We report on the crystal structure of the drug-binding domain of AlbA (AlbAS) in complex with albicidin. Both α-helical repeat domains of AlbAS are required to cooperatively clamp albicidin, which is unusual for drug-binding proteins of the MerR family. Structure-guided NMR binding studies employing synthetic albicidin derivatives give valuable information about ligand promiscuity of AlbAS. Our findings thus expand the general understanding of antibiotic resistance mechanisms and support current drug-design efforts directed at more effective albicidin analogs.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência Microbiana a Medicamentos , Klebsiella oxytoca/química , Xanthomonas/química , Antibacterianos/farmacologia , Proteínas de Transporte/metabolismo , Cristalização , Cristalografia por Raios X , Escherichia coli/metabolismo , Klebsiella oxytoca/efeitos dos fármacos , Ligantes , Espectroscopia de Ressonância Magnética , Compostos Orgânicos/química , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Síncrotrons , Temperatura , Xanthomonas/efeitos dos fármacos
4.
Chemistry ; 23(61): 15316-15321, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28876492

RESUMO

Natural products represent an important source of potential novel antimicrobial drug leads. Low production by microorganisms in cell culture often delays the structural elucidation or even prevents a timely discovery. Starting from the anti-Gram-negative antibacterial compound albicidin produced by Xanthomonas albilineans, we describe a bioactivity-guided approach combined with non-targeted tandem mass spectrometry and spectral (molecular) networking for the discovery of novel antimicrobial compounds. We report eight new natural albicidin derivatives, four of which bear a ß-methoxy cyanoalanine or ß-methoxy asparagine as the central α-amino acid. We present the total synthesis of these albicidins, which facilitated the unambiguous determination of the (2 S,3 R)-stereoconfiguration which is complemented by the assessment of the stereochemistry on antibacterial activity.


Assuntos
Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Compostos Orgânicos/síntese química , Compostos Orgânicos/química , Estereoisomerismo , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Xanthomonas/química , Xanthomonas/metabolismo
5.
ChemMedChem ; 11(14): 1499-502, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27245621

RESUMO

To investigate the pharmacophore regions of the antibiotic albicidin, derivatives with variations on the central amino acid were synthesized. Charged as well as uncharged residues were chosen to explore the influence of charge, chirality, and steric bulk. The bioactivity of the newly synthesized derivatives was determined by a microdilution technique to obtain minimum inhibitory concentrations (MIC) values. The compounds were also tested in a cell-free system to obtain information about their ability to inhibit their primary target, DNA gyrase. It was then shown that derivatives with uncharged side chains retain antibacterial activity, whereas incorporation of charged amino acid residues decreases the antibacterial activity dramatically, possibly due to restricted cell penetration of these derivatives. From the newly synthesized derivatives, the threonine derivative shows the most promising results in both tests. The information will help to develop the features of albicidin toward more drug-like structures.


Assuntos
Alanina/análogos & derivados , Alanina/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , DNA Girase/metabolismo , Escherichia coli/efeitos dos fármacos , Micrococcus luteus/efeitos dos fármacos , Compostos Orgânicos/síntese química , Compostos Orgânicos/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Xanthomonas
6.
ACS Chem Biol ; 11(5): 1198-204, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26886160

RESUMO

Albicidin is a potent antibiotic and phytotoxin produced by Xanthomonas albilineans which targets the plant and bacterial DNA gyrase. We now report on a new albicidin derivative which is carbamoylated at the N-terminal coumaric acid by the action of the ATP-dependent O-carbamoyltransferase Alb15, present in the albicidin (alb) gene cluster. Carbamoyl-albicidin was characterized by tandem mass spectrometry from cultures of a Xanthomonas overproducer strain and the gene function confirmed by gene inactivation of alb15 in X. albilineans. Expression of alb15 in Escherichia coli and in vitro reconstitution of the carbamoyltransferase activity confirmed albicidin as the substrate. The chemical synthesis of carbamoyl-albicidin finally enabled us to assess its bioactivity by means of in vitro gyrase inhibition and antibacterial assays. Compared to albicidin, carbamoyl-albicidin showed a significantly higher inhibitory efficiency against bacterial gyrase (∼8 vs 49 nM), which identifies the carbamoyl group as an important structural feature of albicidin maturation.


Assuntos
Proteínas de Bactérias/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Xanthomonas/enzimologia , Proteínas de Bactérias/genética , Carboxil e Carbamoil Transferases/genética , Genes Bacterianos , Família Multigênica , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Especificidade por Substrato , Xanthomonas/química , Xanthomonas/genética , Xanthomonas/metabolismo
7.
J Lipid Res ; 54(1): 107-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23132909

RESUMO

The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I(-/-) mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-ß-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I(-/-) × apoE(-/-) mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-ß-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1(-/-) or LCAT(-/-) mice. Coexpression of apoA-IV and LCAT in apoA-I(-/-) mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Apolipoproteínas A/metabolismo , Lipoproteínas HDL/biossíntese , Lipoproteínas HDL/química , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Animais , Células HEK293 , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...