Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1888): 20220220, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37661736

RESUMO

The issue under discussion here is whether a decrease in the degree of UCP1 activity (and brown adipose tissue activity in general) could be a cause of obesity in humans. This possibility principally requires the existence of the phenomenon of diet-induced thermogenesis. Obesity could be a consequence of a reduced functionality of diet-induced thermogenesis. Experiments in mice indicate that diet-induced thermogenesis exists and is dependent on the presence of UCP1 and thus of brown adipose tissue activity. Accordingly, many (but not all) experiments indicate that in the absence of UCP1, mice become obese. Whether similar mechanisms exist in humans is still unknown. A series of studies have indicated a correlation between obesity and low brown adipose tissue activity, but it may be so that the obesity itself may influence the estimates of brown adipose tissue activity (generally glucose uptake), partly explaining the relationship. Estimates of brown adipose tissue catabolizing activity would seem to indicate that it may possess a capacity sufficient to help maintain body weight, and obesity would thus be aggravated in its absence. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.


Assuntos
Obesidade , Termogênese , Humanos , Obesidade/etiologia , Peso Corporal , Tecido Adiposo Marrom , Dieta
2.
Mol Metab ; 76: 101782, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499977

RESUMO

OBJECTIVE: The possibility to counteract the development of obesity in humans by recruiting brown or brite/beige adipose tissue (and thus UCP1) has attracted much attention. Here we examine if a diet that can activate diet-induced thermogenesis can exploit pre-enhanced amounts of UCP1 to counteract the development of diet-induced obesity. METHODS: To investigate the anti-obesity significance of highly augmented amounts of UCP1 for control of body energy reserves, we physiologically increased total UCP1 amounts by recruitment of brown and brite/beige tissues in mice. We then examined the influence of the augmented UCP1 levels on metabolic parameters when the mice were exposed to a high-fat/high-sucrose diet under thermoneutral conditions. RESULTS: The total UCP1 levels achieved were about 50-fold higher in recruited than in non-recruited mice. Contrary to underlying expectations, in the mice with highly recruited UCP1 and exposed to a high-fat/high-sucrose diet the thermogenic capacity of this UCP1 was completely inactivate. The mice even transiently (in an adipostat-like manner) demonstrated a higher metabolic efficiency and fat gain than did non-recruited mice. This was accomplished without altering energy expenditure or food absorption efficiency. The metabolic efficiency here was indistinguishable from that of mice totally devoid of UCP1. CONCLUSIONS: Although UCP1 protein may be available, it is not inevitably utilized for diet-induced thermogenesis. Thus, although attempts to recruit UCP1 in humans may become successful as such, it is only if constant activation of the UCP1 is also achieved that amelioration of obesity development could be attained.


Assuntos
Tecido Adiposo Marrom , Obesidade , Humanos , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético , Tecido Adiposo Bege/metabolismo
3.
Am J Physiol Endocrinol Metab ; 316(5): E729-E740, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807213

RESUMO

The attractive tenet that recruitment and activation of brown adipose tissue (BAT) and uncoupling protein 1 (UCP1) could counteract the development of obesity and its comorbidities in humans has been experimentally corroborated mainly by experiments demonstrating that UCP1-ablated mice on a C57Bl/6 background (exempt from thermal stress) become more obese when fed a high-fat diet. However, concerns may be raised that this outcome of UCP1 ablation is restricted to this very special inbred and particularly obesity-prone mouse strain. Therefore, we have examined to which degree UCP1 ablation has similar metabolic effects in a mouse strain known to be obesity resistant: the 129S strain. For this, male 129S2/sv or 129SV/Pas mice and corresponding UCP1-knockout mice were fed chow or a high-fat or a cafeteria diet for 4 wk. The absence of UCP1 augmented obesity (weight gain, body fat mass, %body fat, fat depot size) in high-fat diet- and cafeteria-fed mice, with a similar or lower food intake, indicating that, when present, UCP1 indeed decreases metabolic efficiency. The increased obesity was due to a decrease in energy expenditure. The consumption of a high-fat or cafeteria diet increased total BAT UCP1 protein levels in wild-type mice, and correspondingly, high-fat diet and cafeteria diet-fed mice demonstrated increased norepinephrine-induced oxygen consumption. There was a positive correlation between body fat and total BAT UCP1 protein content. No evidence for diet-induced adrenergic thermogenesis was found in UCP1-ablated mice. Thus, the obesity-reducing effect of UCP1 is not restricted to a particular, and perhaps not representative, mouse strain.


Assuntos
Dieta Hiperlipídica , Obesidade/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Tecido Adiposo , Tecido Adiposo Marrom/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Ingestão de Alimentos , Metabolismo Energético/genética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Norepinefrina/farmacologia , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Aumento de Peso
4.
Am J Physiol Endocrinol Metab ; 313(5): E515-E527, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679625

RESUMO

The significance of diet-induced thermogenesis (DIT) for metabolic control is still debated. Although obesogenic diets recruit UCP1 and adrenergically inducible thermogenesis, and although the absence of UCP1 may promote the development of obesity, no actual UCP1-related thermogenesis identifiable as diet-induced thermogenesis has to date been unambiguously demonstrated. Examining mice living at thermoneutrality, we have identified a process of facultative (directly elicited by acute eating), adaptive (magnitude develops over weeks on an obesogenic diet), and fully UCP1-dependent thermogenesis. We found no evidence for UCP1-independent diet-induced thermogenesis. The thermogenesis was proportional to the total amount of UCP1 protein in brown adipose tissue and was not dependent on any contribution of UCP1 in brite/beige adipose tissue, since no UCP1 protein was found there under these conditions. Total UCP1 protein amount developed proportionally to total body fat content. The physiological messenger linking obesity level and acute eating to increased thermogenesis is not known. Thus UCP1-dependent diet-induced thermogenesis limits obesity development during exposure to obesogenic diets but does not prevent obesity as such.


Assuntos
Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Dieta , Termogênese/genética , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Animais , Composição Corporal , Calorimetria Indireta , Metabolismo Energético/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia
6.
Am J Physiol Endocrinol Metab ; 311(1): E202-13, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189935

RESUMO

The development of obesity may be aggravated if obesity itself insulates against heat loss and thus diminishes the amount of food burnt for body temperature control. This would be particularly important under normal laboratory conditions where mice experience a chronic cold stress (at ≈20°C). We used Scholander plots (energy expenditure plotted against ambient temperature) to examine the insulation (thermal conductance) of mice, defined as the inverse of the slope of the Scholander curve at subthermoneutral temperatures. We verified the method by demonstrating that shaved mice possessed only half the insulation of nonshaved mice. We examined a series of obesity models [mice fed high-fat diets and kept at different temperatures, classical diet-induced obese mice, ob/ob mice, and obesity-prone (C57BL/6) vs. obesity-resistant (129S) mice]. We found that neither acclimation temperature nor any kind or degree of obesity affected the thermal insulation of the mice when analyzed at the whole mouse level or as energy expenditure per lean weight. Calculation per body weight erroneously implied increased insulation in obese mice. We conclude that, in contrast to what would be expected, obesity of any kind does not increase thermal insulation in mice, and therefore, it does not in itself aggravate the development of obesity. It may be discussed as to what degree of effect excess adipose tissue has on insulation in humans and especially whether significant metabolic effects are associated with insulation in humans.


Assuntos
Aclimatação/fisiologia , Regulação da Temperatura Corporal , Temperatura Baixa , Metabolismo Energético/fisiologia , Obesidade , Condutividade Térmica , Animais , Composição Corporal , Calorimetria Indireta , Dieta Hiperlipídica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Obesos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...