Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 589(7841): 211-213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33442039

RESUMO

Soft γ-ray repeaters exhibit bursting emission in hard X-rays and soft γ-rays. During the active phase, they emit random short (milliseconds to several seconds long), hard-X-ray bursts, with peak luminosities1 of 1036 to 1043 erg per second. Occasionally, a giant flare with an energy of around 1044 to 1046 erg is emitted2. These phenomena are thought to arise from neutron stars with extremely high magnetic fields (1014 to 1015 gauss), called magnetars1,3,4. A portion of the second-long initial pulse of a giant flare in some respects mimics short γ-ray bursts5,6, which have recently been identified as resulting from the merger of two neutron stars accompanied by gravitational-wave emission7. Two γ-ray bursts, GRB 051103 and GRB 070201, have been associated with giant flares2,8-11. Here we report observations of the γ-ray burst GRB 200415A, which we localized to a 20-square-arcmin region of the starburst galaxy NGC 253, located about 3.5 million parsecs away. The burst had a sharp, millisecond-scale hard spectrum in the initial pulse, which was followed by steady fading and softening over 0.2 seconds. The energy released (roughly 1.3 × 1046 erg) is similar to that of the superflare5,12,13 from the Galactic soft γ-ray repeater SGR 1806-20 (roughly 2.3 × 1046 erg). We argue that GRB 200415A is a giant flare from a magnetar in NGC 253.

2.
Nature ; 575(7783): 459-463, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31748725

RESUMO

Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.

3.
Science ; 343(6166): 51-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24263132

RESUMO

Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

4.
Nature ; 434(7037): 1098-103, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858565

RESUMO

Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...