Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vasc Biol ; 4(1): 1-10, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35441125

RESUMO

Hutchinson-Guilford Progeria syndrome (HGPS) is a rare genetic disease of premature aging and early death due to cardiovascular disease. The arteries of HGPS children and mice are pathologically stiff, and HGPS mice also display reduced arterial contractility. We recently showed that reduced contractility is an early event in HGPS and linked to an aberrantly low expression of smooth muscle myosin heavy chain (smMHC). Here, we have explored the basis for reduced smMHC abundance and asked whether it is a direct effect of progerin expression or a longer-term adaptive response. Myh11, the gene encoding for smMHC, is regulated by myocardin-related transcription factors (MRTFs), and we show that HGPS aortas have a reduced MRTF signature. Additionally, smooth muscle cells (SMCs) isolated from HGPS mice display reduced MRTF nuclear localization. Acute progerin expression in WT SMCs phenocopied both the decrease in MRTF nuclear localization and expression of Myh11 seen in HGPS. Interestingly, RNA-mediated depletion of MRTF-A in WT SMCs reproduced the preferential inhibitory effect of progerin on Myh11 mRNA relative to Acta2 mRNA. Our results show that progerin expression acutely disrupts MRTF localization to the nucleus and suggest that the consequent decrease in nuclear coactivator activity can help to explain the reduction in smMHC abundance and SMC contractility seen in HGPS.

2.
Sci Rep ; 11(1): 10625, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34012019

RESUMO

Children with Hutchinson-Gilford Progeria Syndrome (HGPS) suffer from multiple cardiovascular pathologies due to the expression of progerin, a mutant form of the nuclear envelope protein Lamin A. Progerin expression has a dramatic effect on arterial smooth muscle cells (SMCs) and results in decreased viability and increased arterial stiffness. However, very little is known about how progerin affects SMC contractility. Here, we studied the LaminAG609G/G609G mouse model of HGPS and found reduced arterial contractility at an early age that correlates with a decrease in smooth muscle myosin heavy chain (SM-MHC) mRNA and protein expression. Traction force microscopy on isolated SMCs from these mice revealed reduced force generation compared to wild-type controls; this effect was phenocopied by depletion of SM-MHC in WT SMCs and overcome by ectopic expression of SM-MHC in HGPS SMCs. Arterial SM-MHC levels are also reduced with age in wild-type mice and humans, suggesting a common defect in arterial contractility in HGPS and normal aging.


Assuntos
Regulação da Expressão Gênica , Contração Muscular/fisiologia , Músculo Liso Vascular/fisiopatologia , Cadeias Pesadas de Miosina/genética , Progéria/genética , Progéria/fisiopatologia , Miosinas de Músculo Liso/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/patologia , Animais , Aorta/patologia , Aorta/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , Miosinas de Músculo Liso/metabolismo
3.
Life Sci Alliance ; 4(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33687998

RESUMO

Arterial stiffening and cardiac dysfunction are hallmarks of premature aging in Hutchinson-Gilford Progeria Syndrome (HGPS), but the molecular regulators remain unknown. Here, we show that the LaminAG609G mouse model of HGPS recapitulates the premature arterial stiffening and early diastolic dysfunction seen in human HGPS. Lysyl oxidase (LOX) is up-regulated in the arteries of these mice, and treatment with the LOX inhibitor, ß-aminopropionitrile, improves arterial mechanics and cardiac function. Genome-wide and mechanistic analysis revealed reduced expression of the LOX-regulator, miR-145, in HGPS arteries, and forced expression of miR-145 restores normal LOX gene expression in HGPS smooth muscle cells. LOX abundance is also increased in the carotid arteries of aged wild-type mice, but its spatial expression differs from HGPS and its up-regulation is independent of changes in miR-145 abundance. Our results show that miR-145 is selectively misregulated in HGPS and that the consequent up-regulation of LOX is causal for premature arterial stiffening and cardiac dysfunction.


Assuntos
Aminopropionitrilo/farmacocinética , Progéria/tratamento farmacológico , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Senilidade Prematura/genética , Senilidade Prematura/fisiopatologia , Aminopropionitrilo/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Progéria/metabolismo , Progéria/fisiopatologia , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Rigidez Vascular/efeitos dos fármacos , Rigidez Vascular/fisiologia
4.
Aging Cell ; 18(3): e12936, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884114

RESUMO

Vascular stiffness is a major cause of cardiovascular disease during normal aging and in Hutchinson-Gilford progeria syndrome (HGPS), a rare genetic disorder caused by ubiquitous progerin expression. This mutant form of lamin A causes premature aging associated with cardiovascular alterations that lead to death at an average age of 14.6 years. We investigated the mechanisms underlying vessel stiffness in LmnaG609G/G609G mice with ubiquitous progerin expression, and tested the effect of treatment with nitrites. We also bred LmnaLCS/LCS Tie2Cre+/tg and LmnaLCS/LCS SM22αCre+/tg mice, which express progerin specifically in endothelial cells (ECs) and in vascular smooth muscle cells (VSMCs), respectively, to determine the specific contribution of each cell type to vascular pathology. We found vessel stiffness and inward remodeling in arteries of LmnaG609G/G609G and LmnaLCS/LCS SM22αCre+/tg , but not in those from LmnaLCS/LCS Tie2Cre+/tg mice. Structural alterations in aortas of progeroid mice were associated with decreased smooth muscle tissue content, increased collagen deposition, and decreased transverse waving of elastin layers in the media. Functional studies identified collagen (unlike elastin and the cytoskeleton) as an underlying cause of aortic stiffness in progeroid mice. Consistent with this, we found increased deposition of collagens III, IV, V, and XII in the media of progeroid aortas. Vessel stiffness and inward remodeling in progeroid mice were prevented by adding sodium nitrite in drinking water. In conclusion, LmnaG609G/G609G arteries exhibit stiffness and inward remodeling, mainly due to progerin-induced damage to VSMCs, which causes increased deposition of medial collagen and a secondary alteration in elastin structure. Treatment with nitrites prevents vascular stiffness in progeria.


Assuntos
Modelos Animais de Doenças , Músculo Liso Vascular/efeitos dos fármacos , Progéria/tratamento farmacológico , Progéria/genética , Nitrito de Sódio/farmacologia , Nitrito de Sódio/uso terapêutico , Rigidez Vascular/efeitos dos fármacos , Animais , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Progéria/patologia , Nitrito de Sódio/administração & dosagem
5.
J Biol Chem ; 291(24): 12747-12760, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27068743

RESUMO

Most colon cancer cases are initiated by truncating mutations in the tumor suppressor, adenomatous polyposis coli (APC). APC is a critical negative regulator of the Wnt signaling pathway that participates in a multi-protein "destruction complex" to target the key effector protein ß-catenin for ubiquitin-mediated proteolysis. Prior work has established that the poly(ADP-ribose) polymerase (PARP) enzyme Tankyrase (TNKS) antagonizes destruction complex activity by promoting degradation of the scaffold protein Axin, and recent work suggests that TNKS inhibition is a promising cancer therapy. We performed a yeast two-hybrid (Y2H) screen and uncovered TNKS as a putative binding partner of Drosophila APC2, suggesting that TNKS may play multiple roles in destruction complex regulation. We find that TNKS binds a C-terminal RPQPSG motif in Drosophila APC2, and that this motif is conserved in human APC2, but not human APC1. In addition, we find that APC2 can recruit TNKS into the ß-catenin destruction complex, placing the APC2/TNKS interaction at the correct intracellular location to regulate ß-catenin proteolysis. We further show that TNKS directly PARylates both Drosophila Axin and APC2, but that PARylation does not globally regulate APC2 protein levels as it does for Axin. Moreover, TNKS inhibition in colon cancer cells decreases ß-catenin signaling, which we find cannot be explained solely through Axin stabilization. Instead, our findings suggest that TNKS regulates destruction complex activity at the level of both Axin and APC2, providing further mechanistic insight into TNKS inhibition as a potential Wnt pathway cancer therapy.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteína Axina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Tanquirases/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteína Axina/genética , Western Blotting , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Imunofluorescência , Células HCT116 , Humanos , Masculino , Ligação Proteica , Especificidade por Substrato , Tanquirases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Técnicas do Sistema de Duplo-Híbrido , beta Catenina/genética
6.
Mol Biol Cell ; 26(24): 4503-18, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26446838

RESUMO

The tumor suppressor Adenomatous polyposis coli (APC) plays a key role in regulating the canonical Wnt signaling pathway as an essential component of the ß-catenin destruction complex. C-terminal truncations of APC are strongly implicated in both sporadic and familial forms of colorectal cancer. However, many questions remain as to how these mutations interfere with APC's tumor suppressor activity. One set of motifs frequently lost in these cancer-associated truncations is the SAMP repeats that mediate interactions between APC and Axin. APC proteins in both vertebrates and Drosophila contain multiple SAMP repeats that lack high sequence conservation outside of the Axin-binding motif. In this study, we tested the functional redundancy between different SAMPs and how these domains are regulated, using Drosophila APC2 and its two SAMP repeats as our model. Consistent with sequence conservation-based predictions, we show that SAMP2 has stronger binding activity to Axin in vitro, but SAMP1 also plays an essential role in the Wnt destruction complex in vivo. In addition, we demonstrate that the phosphorylation of SAMP repeats is a potential mechanism to regulate their activity. Overall our findings support a model in which each SAMP repeat plays a mechanistically distinct role but they cooperate for maximal destruction complex function.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Via de Sinalização Wnt , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteína Axina/química , Proteína Axina/genética , Proteína Axina/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/química , Neoplasias Colorretais/genética , Drosophila , Proteínas de Drosophila/química , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/química , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...