Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 62, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720883

RESUMO

Directing both organismal homeostasis and physiological adaptation, the pituitary is a key endocrine gland in all vertebrates. One of its major tasks is to coordinate sexual maturation through the production and release of hormones stimulating gonad development. In order to study its developmental dynamics in the model fish medaka (Oryzias latipes), we sampled both the pituitary and the ovaries of 68 female fish. Of these, 55 spanned the entire course of sexual maturation from prepubertal juveniles to spawning adults. An additional 13 showed either considerably faster or slower growth and development than the majority of fish. We used histological examination of the ovaries to determine a histological maturation stage, and analyzed the pituitary glands using RNA-seq optimized for low input. Taken together, these data reveal the timing of hormone production priorities, and form a comprehensive resource for the study of their regulation.


Assuntos
Oryzias , RNA-Seq , Animais , Feminino , Oryzias/genética , Hipófise , Maturidade Sexual , Fatores de Tempo
2.
Biology (Basel) ; 11(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36138738

RESUMO

An international survey was conducted regarding species used for research, methods of euthanasia, health monitoring, and biosecurity in fish laboratories. A total of 145 facilities from 23 countries contributed. Collectively, over 80 different species (or groups of species) were reported to be used for research, of which zebrafish (Danio rerio) was the most common by far. About half of the participating laboratories used multiple species. Anesthetic overdose was the preferred method for euthanasia for adult, fry (capable of independent feeding), and larval (not capable of independent feeding) fish. For all developmental stages, the most popular anesthetic compound was tricaine (MS-222), a substance associated with distress and aversion in several species. Moreover, around half of the respondents did not perform a completion method to ensure death. One-quarter of the responding facilities did not have a health monitoring system in place. While most respondents had some form of quarantine process for imported fish, only a small fraction reported quarantine routines that ensure reliable biological barriers. Furthermore, less than one in five screened fish for pathogens while in quarantine. In sum, there was little consensus amongst facilities in how to perform biosecurity measures. Regarding euthanasia, health monitoring, and biosecurity processes, there is a need for updated and universal guidelines and for many laboratories to adjust their practices.

3.
Biology (Basel) ; 11(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35453745

RESUMO

Euthanasia in zebrafish (Danio rerio) younger than 5 days post fertilization (dpf) is poorly described in the literature, and standardized protocols are lacking, most likely because larvae not capable of independent feeding are often not protected under national legislations. We assessed the euthanasia efficacy in laboratories in different countries of a one hour anesthetic overdose immersion with buffered lidocaine hydrochloride (1 g/L, with or without 50 mL/L of ethanol), buffered tricaine (1 g/L), clove oil (0.1%), benzocaine (1 g/L), or 2-phenoxyethanol (3 mL/L), as well as the efficacy of hypothermic shock (one hour immersion) and electrical stunning (for one minute), on zebrafish at <12 h post fertilization (hpf), 24 hpf, and 4 dpf. Based on the survival/recovery rates 24 h after treatment, the most effective methods were clove oil, lidocaine with ethanol, and electrical stunning. For 4 dpf larvae, signs of aversion during treatment demonstrated that all anesthetics, except lidocaine, induced aversive behavior. Therefore, the most suited euthanasic treatment was lidocaine hydrochloride 1 g/L, buffered with 2 g/L of sodium bicarbonate and mixed with 50 mL/L of ethanol, which euthanized both embryos and larvae in an efficient and stress-free manner. Electrical stunning also euthanized embryos and larvae efficiently and without signs of aversion; this method needs further assessment in other laboratories to draw firm conclusions.

4.
Biology (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827125

RESUMO

Zebrafish are often euthanized by overdose of anaesthesia. However, fish may have aversion towards some anaesthetics, and protocol efficacy varies between species. Using wild type adult Danio rerio, we assessed time to loss of opercular beat, righting, and startle reflexes during induction of anaesthetic overdose by either tricaine (0.5 g/L or 1 g/L), benzocaine (1 g/L), 2-phenoxyethanol (3 mL/L), clove oil (0.1%), isoeugenol (540 mg/L), lidocaine hydrochloride (1 g/L), or etomidate (50 mg/L). Initial screening demonstrated that benzocaine and buffered lidocaine hydrochloride achieved the fastest loss of reflexes. The rapid induction times were confirmed when retesting using larger batches of fish. The fastest induction was obtained with 1 g/L lidocaine hydrochloride buffered with 2 g/L NaHCO3, in which all adult zebrafish lost reflexes in less than 2 min. Next, we monitored signs of distress during benzocaine or buffered lidocaine hydrochloride overdose induction. The results indicated that buffered lidocaine hydrochloride caused significantly less aversive behaviors than benzocaine. Finally, we tested several buffers to refine the lidocaine hydrochloride immersion. The most efficient buffer for euthanasia induction using 1g/L lidocaine hydrochloride was 2 g/L NaHCO3 with 50 mL/L 96% ethanol, inducing immobility in less than 10 s and with only 2% of adult zebrafish displaying aversive behaviors during treatment.

5.
Front Endocrinol (Lausanne) ; 11: 605068, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33365013

RESUMO

The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.


Assuntos
Plasticidade Celular , Hormônios Esteroides Gonadais/farmacologia , Gonadotrofos/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Animais , Peixes
6.
Gen Comp Endocrinol ; 285: 113276, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536722

RESUMO

Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshßα, mdLhßα, tiFshßα, tiLhßα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshßα was able to activate the mdLhr, and mdLhßα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhßα, tiFshßα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshßα, tiLhßα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshßα, mdLhßα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.


Assuntos
Oryzias/metabolismo , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Feminino , Hormônio Foliculoestimulante/química , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Luteinizante/química , Hormônio Luteinizante/metabolismo , Masculino , Modelos Moleculares , Receptores do FSH/genética , Receptores da Gonadotropina/metabolismo , Receptores do LH/genética , Transdução de Sinais
7.
Gen Comp Endocrinol ; 285: 113293, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580881

RESUMO

Gonadotropin-releasing hormone (Gnrh) plays a major role in the regulation of physiological and behavioural processes related to reproduction. In the pituitary, it stimulates gonadotropin synthesis and release via activation of Gnrh receptors (Gnrhr), belonging to the G protein-coupled receptor superfamily. Evidence suggests that differential regulation of the two gonadotropins (Fsh and Lh) is achieved through activation of distinct intracellular pathways and, probably, through the action of distinct receptors. However, the roles of the different Gnrhr isoforms in teleosts are still not well understood. This study investigates the gene expression of Gnrhr in the pituitary gland of precociously maturing Atlantic salmon (Salmo salar) male parr. A total of six Gnrhr paralogs were identified in the Atlantic salmon genome and named according to phylogenetic relationship; gnrhr1caα, gnrhr1caß, gnrhr1cbα, gnrhr1cbß, gnrhr2bbα, gnrhr2bbß. All paralogs, except gnrhr1caα, were expressed in male parr pituitary during gonadal maturation as evidenced by qPCR analysis. Only one gene, gnrhr2bbα, was differentially expressed depending on maturational stage (yearly cycle), with high expression levels in maturing fish, increasing in parallel with gonadotropin subunit gene expression. Additionally, a correlation in daily expression levels was detected between gnrhr2bbα and lhb (daily cycle) in immature fish in mid-April. Double fluorescence in situ hybridization showed that gnrhr2bbα was expressed exclusively in lhb gonadotropes in the pituitary, with no expression detected in fshb cells. These results suggest the involvement of receptor paralog gnrhr2bbα in the regulation of lhb cells, and not fshb cells, in sexually maturing Atlantic salmon male parr.


Assuntos
Hormônio Luteinizante/metabolismo , Receptores LHRH/metabolismo , Salmo salar/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Gonadotropinas/metabolismo , Masculino , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores LHRH/genética , Salmo salar/genética , Maturidade Sexual/genética , Testículo/metabolismo , Distribuição Tecidual
8.
MethodsX ; 6: 1473-1479, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293904

RESUMO

The paucity of information on understanding the regulatory mechanisms that are involved in the control of piscine Fsh and Lh synthesis, secretion, and function, prompted the present work. Part of the problem is related to the molecular heterogeneity and the unavailability of Fsh and Lh assays for quantifying gonadotropins, in particular assays regarding the measurement of Fsh, and such assays are available today for only a few teleost species. The present study reports the development and validation of competitive ELISAs for quantitative determination of medaka Fsh and Lh by first producing medaka recombinant (md) gonadotropins mdFshß, mdLhß, mdFshßα, and mdLhßα by Pichia pastoris, generating specific antibodies against their respective ß subunits, and their use within the development of ELISAs. The advantages of this protocol include: •The reproducibility of the ELISA demonstrated was relatively high, as shown by reasonably low intra- (Fsh 2.7%, Lh 3%) and interassay CVs (Fsh 5.3%, Lh 5.7%).•The high degree of parallelism between serial dilutions of the recombinant and native pituitary-derived Fsh and Lh, may be a sign of similar structures and immunologically similarity.•Two new competitive ELISAs for the quantification of medaka Fsh and Lh were established for the first time.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31254635

RESUMO

Through the action of cortisol, stress can affect reproductive biology with behavioural and physiological alterations. Using mixed sex primary pituitary cultures from Atlantic cod (Gadus morhua), the present study aimed to investigate potential direct effects of basal and stress level cortisol on the pituitary in terms of cell viability and reproduction-related gene expression at different stages of sexual maturity. Stress level of cortisol stimulated cell viability in cells derived from sexually maturing and mature fish. In cells from spent fish, high cortisol levels did not affect cell viability in terms of metabolic activity, but did stimulate viability in terms of membrane integrity. Basal cortisol levels did not affect cell viability. Ethanol, used as solvent for cortisol, decreased cell viability at all maturity stages, but did generally not affect gene expression. Genes investigated were fshb, lhb and two Gnrh receptors expressed in cod gonadotropes (gnrhr1b and gnrhr2a). Cortisol had dual effects on fshb expression; stimulating expression in cells from mature fish at stress dose, while inhibiting expression in cells from spent fish at both doses. In contrast, cortisol had no direct effect on lhb expression. While gnrhr2a transcript levels largely increased following cortisol treatment, gnrhr1b expression decreased in cells from spent fish and was unaffected at other maturity stages. These findings demonstrate that cortisol can act directly and differentially at the pituitary level in Atlantic cod and that factors facilitating these actions are dose-dependently activated and vary with level of sexual maturity.


Assuntos
Gadus morhua/crescimento & desenvolvimento , Gadus morhua/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hidrocortisona/farmacologia , Hipófise/citologia , Reprodução/genética , Maturidade Sexual/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Etanol , Gonadotropinas/genética , Gonadotropinas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reprodução/efeitos dos fármacos , Maturidade Sexual/efeitos dos fármacos , Solventes
10.
Data Brief ; 22: 1057-1063, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30740493

RESUMO

The gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play essential roles in vertebrate reproduction. This article presents data on molecular weight validation of recombinant medaka (Oryzias latipes) (md) gonadotropins Fshß (mdFshß), Lhß (mdLhß), Fshßα (mdFshßα), and Lhßα (mdLhßα) generated by Pichia pastoris, as well as data on a validation of produced antibodies against Fshß and Lhß by Western blot analysis. Furthermore, the article includes data on Fsh and Lh protein levels in male medaka pituitaries using recombinant mdFshßα and mdLhßα within enzyme-linked immunosorbent assays (ELISAs), in which protein amounts were analyzed related to body weight and age of the fish. This dataset is associated with the research article entitled "Medaka Follicle-stimulating hormone (Fsh) and Luteinizing hormone (Lh): Developmental profiles of pituitary protein and gene expression" (Burow et al., in press).

11.
Gen Comp Endocrinol ; 272: 93-108, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576646

RESUMO

The two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are of particular importance within the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates. In the current study, we demonstrate the production and validation of Japanese medaka (Oryzias latipes) recombinant (md) gonadotropins Fshß (mdFshß), Lhß (mdLhß), Fshßα (mdFshßα), and Lhßα (mdLhßα) by Pichia pastoris, the generation of specific rabbit antibodies against their respective ß subunits, and their use within the development and validation of competitive enzyme-linked immunosorbent assays (ELISAs) for quantification of medaka Fsh and Lh. mdFsh and mdLh were produced as single-chain polypeptides by linking the α subunit with mdFshß or mdLhß mature protein coding sequences to produce a "tethered" polypeptide with the ß-chain at the N-terminal and the α-chain at the C-terminal. The specificity of the antibodies raised against mdFshß and mdLhß was determined by immunofluorescence (IF) for Fshß and Lhß on medaka pituitary tissue, while comparison with fluorescence in situ hybridization (FISH) for fshb and lhb mRNA was used for validation. Competitive ELISAs were developed using antibodies against mdFshß or mdLhß, and the tethered proteins mdFshßα or mdLhßα for standard curves. The standard curve for the Fsh ELISA ranged from 97.6 pg/ml to 50 ng/ml, and for the Lh ELISA from 12.21 pg/ml to 6.25 ng/ml. The sensitivity of the assays for Fsh and Lh was 44.7 and 70.8 pg/ml, respectively. A profile of pituitary protein levels of medaka Fsh and Lh comparing juveniles with adults showed significant increase of protein amount from juvenile group (body length from 12 mm to 16.5 mm) to adult group (body length from 21 mm to 26.5 mm) for both hormones in male medaka. Comparing these data to a developmental profile of pituitary mRNA expression of medaka fshb and lhb, the mRNA expression of lhb also increased during male maturation and a linear regression analysis revealed a significant increase of lhb expression with increased body length that proposes a linear model. However, fshb mRNA expression did not change significantly during male development and therefore was not correlated with body length. In summary, we have developed and validated homologous ELISA assays for medaka Fsh and Lh based on proteins produced in P. pastoris, assays that will be used to study the functions and regulations of Fsh and Lh in more detail.


Assuntos
Ensaio de Imunoadsorção Enzimática/métodos , Hormônio Foliculoestimulante/metabolismo , Expressão Gênica/genética , Hormônio Luteinizante/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Feminino , Masculino , Coelhos
12.
J Vis Exp ; (138)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30222142

RESUMO

Primary cell culture is a powerful tool commonly used by scientists to study cellular properties and mechanisms of isolated cells in a controlled environment. Despite vast differences in the physiology between mammals and fish, primary cell culture protocols from fish are often based on mammalian culture conditions, often with only minor modifications. The environmental differences affect not only body temperature, but also blood serum parameters such as osmolality, pH, and pH buffer capacity. As cell culture media and similar working solutions are meant to mimic characteristics of the extracellular fluid and/or blood serum to which a cell is adapted, it is crucial that these parameters are adjusted specifically to the animal in question. The current protocol describes optimized primary culture conditions for medaka (Oryzias latipes). The protocol provides detailed steps on how to isolate and maintain healthy dissociated pituitary cells for more than one week and includes the following steps: 1. the adjustment of the osmolality to the values found in medaka blood plasma, 2. the adjustment of the incubation temperature to normal medaka temperature (here in the aquarium facility), and 3. the adjustment of the pH and bicarbonate buffer to values comparable to other fish species living at similar temperatures. The results presented using the described protocol promote physiologically meaningful results for medaka and can be used as a reference guide by scientists making primary cell cultures from other non-mammalian species.


Assuntos
Adeno-Hipófise/metabolismo , Cultura Primária de Células/métodos , Animais , Peixes , Adeno-Hipófise/citologia
13.
Front Behav Neurosci ; 12: 210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254575

RESUMO

Life experiences in the rearing environment shape the neural and behavioral plasticity of animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived and does not optimally prepare fish for release into the wild. While the behavioral differences between wild and hatchery-reared fish have been examined to some extent, few studies have compared neurobiological characteristics between wild and hatchery-reared individuals. Here, we compare the expression of immediate early gene cfos and neuroplasticity marker brain-derived neurotrophic factor (bdnf) in telencephalic subregions associated with processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post (acute) stress conditions. Using in situ hybridization, we found that the expression level of these markers is highly specific per neuronal region and affected by both the origin of the fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain regions and cfos was more highly expressed in the Dlv (functional equivalent to the mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings demonstrate that the hatchery environment affects neuroplasticity and neural activation in brain regions that are important for learning processes and stress reactivity, providing a neuronal foundation for the behavioral differences observed between wild and hatchery-reared fish.

14.
Reproduction ; 154(5): 581-594, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28780570

RESUMO

Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Gadus morhua/genética , Hormônios Esteroides Gonadais/farmacologia , Hormônio Luteinizante Subunidade beta/genética , Receptores LHRH/genética , Animais , Células Cultivadas , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Gadus morhua/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , Hipófise/citologia , Hipófise/metabolismo , Receptores LHRH/metabolismo
15.
Endocrinology ; 154(9): 3319-30, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836032

RESUMO

Synthesis and release of FSH and LH are differentially regulated by GnRH, but the mechanisms by which this regulation is achieved are not well understood. Teleost fish are powerful models for studying this differential regulation because they have distinct pituitary cells producing either FSH or LH. By using pituitary cultures from Atlantic cod (Gadus morhua), we were able to investigate and compare the electrophysiological properties of fshb- and lhb-expressing cells, identified by single-cell quantitative PCR after recording. Both cell types fired action potentials spontaneously. The relative number of excitable cells was dependent on reproductive season but varied in opposing directions according to season in the 2 cell types. Excitable and quiescent gonadotropes displayed different ion channel repertoires. The dynamics of outward currents and GnRH-induced membrane responses differed between fshb- and lhb-expressing cells, whereas GnRH-induced cytosolic Ca²âº responses were similar. Expression of Ca²âº-activated K⁺ channels also differed with cell type and showed seasonal variation when measured in whole pituitary. The differential presence of these channels corresponds to the differences observed in membrane response to GnRH. We speculate that differences in ion channel expression levels may be involved in seasonal regulation of hormone secretion as well as the differential response to GnRH in LH- and FSH-producing gonadotropes, through differences in excitability and Ca²âº influx.


Assuntos
Proteínas de Peixes/metabolismo , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Gadus morhua/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Gonadotrofos/metabolismo , Hormônio Luteinizante Subunidade beta/metabolismo , Fenômenos Reprodutivos Fisiológicos , Animais , Oceano Atlântico , Sinalização do Cálcio , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Proteínas de Peixes/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Gadus morhua/crescimento & desenvolvimento , Gonadotrofos/citologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Masculino , Noruega , Hipófise/citologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Canais de Potássio Cálcio-Ativados/genética , Canais de Potássio Cálcio-Ativados/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Estações do Ano
16.
Br J Nutr ; 109(12): 2166-74, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23116492

RESUMO

The brain monoamines serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) both play an integrative role in behavioural and neuroendocrine responses to challenges, and comparative models suggest common mechanisms for dietary modulation of transmission by these signal substances in vertebrates. Previous studies in teleosts demonstrate that 7 d of dietary administration with L-tryptophan (Trp), the direct precursor of 5-HT, suppresses the endocrine stress response. The present study investigated how long the suppressive effects of a Trp-enriched feed regimen, at doses corresponding to two, three or four times the Trp levels in commercial feed, last in juvenile Atlantic cod (Gadus morhua) when the fish are reintroduced to a diet with standard amino acid composition. We also wanted to determine whether Trp supplementation induced changes in brain monoaminergic neurochemistry in those forebrain structures innervated by DA and 5-HTergic neurons, by measuring regional activity of DA and 5-HT in the lateral pallial regions (Dl) of the telencephalon and nucleus lateralis tuberis (NLT) of the hypothalamus. Dietary Trp resulted in a dose-dependent suppression in plasma cortisol among fish exposed to confinement stress on the first day following experimental diet; however, such an effect was not observed at 2 or 6 d after Trp treatment. Feeding the fish with moderate Trp doses also evoked a general increase in DA and 5-HT-ergic activity, suggesting that these neural circuits within the NLT and Dl may be indirectly involved in regulating the acute stress response.


Assuntos
Suplementos Nutricionais , Dopamina/metabolismo , Gadus morhua/metabolismo , Hidrocortisona/sangue , Hipotálamo/metabolismo , Serotonina/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Triptofano/administração & dosagem , Análise de Variância , Animais , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Peixes , Hipotálamo/efeitos dos fármacos , Estatísticas não Paramétricas
17.
Gen Comp Endocrinol ; 178(2): 206-15, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22705036

RESUMO

Protocols for primary cultures of teleost cells are commonly only moderately adjusted from similar protocols for mammalian cells, the main adjustment often being of temperature. Because aquatic habitats are in general colder than mammalian body temperatures and teleosts have gills in direct contact with water, pH and buffer capacity of blood and extracellular fluid are different in fish and mammals. Plasma osmolality is generally higher in marine teleosts than in mammals. Using Atlantic cod (Gadus morhua) as a model, we have optimized these physiological parameters to maintain primary pituitary cells in culture for an extended period without loosing key properties. L-15 medium with adjusted osmolality, adapted to low pCO(2) (3.8mm Hg) and temperature (12°C), and with pH 7.85, maintained the cells in a physiologically sounder state than traditional culture medium, significantly improving cell viability compared to the initial protocol. In the optimized culture medium, resting membrane potential and response to releasing hormone were stable for at least two weeks, and the proportion of cells firing action potentials during spawning season was about seven times higher than in the original culture medium. The cells were moderately more viable when the modified medium was supplemented with newborn calf serum or artificial serum substitute. Compared to serum-free L-15 medium, expression of key genes (lhb, fshb, and gnrhr2a) was better maintained in medium containing SSR, whereas NCS tended to decrease the expression level. Although serum-free medium is adequate for many applications, serum supplement may be preferable for experiments dependent on membrane integrity.


Assuntos
Técnicas de Cultura de Células/métodos , Hipófise/citologia , Animais , Dióxido de Carbono , Células Cultivadas , Gadus morhua , Concentração de Íons de Hidrogênio , Concentração Osmolar
18.
Epilepsia ; 51(11): 2280-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20726872

RESUMO

PURPOSE: Endocrine disruptive effects have been frequently observed in patients using antiepileptic drugs (AEDs). Two different AEDs, valproate (VPA) and levetiracetam (LEV), were tested in forskolin-stimulated human adrenal carcinoma (H295R) cells to explore their effect on steroidogenesis. VPA has a long history as an anticonvulsant and is linked with many of the endocrine disorders associated with AED use. LEV is a newer AED, and no endocrine disruptive effects have been reported in humans to date. METHODS: H295R cells, which are capable of full steroidogenesis, were stimulated with forskolin and exposed to either VPA or LEV for 48 h. Medium was collected and analyzed for hormone production. For the VPA-exposed cells, steroidogenic gene expression analysis was also conducted. RESULTS: VPA exposure resulted in a significant reduction in progesterone and estradiol (E2) production, whereas testosterone (T) levels remained unchanged. There were also significant alterations in expression level for most genes analyzed. LEV exposure resulted in a minor, but statistically significant, reduction in T and E2 production. DISCUSSION: Exposure of forskolin-stimulated H295R cells to VPA led to an increased T/E2 ratio through a significant decrease in estradiol production. Gene analysis suggested that VPA affects NR0B1 expression. NR0B1 inhibits promoters of other genes involved in steroidogenesis, and the altered expression of NR0B1 might explain the observed down-regulation in hormone production. The effects of LEV exposure on hormone secretion were not considered to be biologically significant.


Assuntos
Anticonvulsivantes/farmacologia , Colforsina/farmacologia , Estradiol/metabolismo , Piracetam/análogos & derivados , Progesterona/metabolismo , Testosterona/metabolismo , Ácido Valproico/farmacologia , Neoplasias das Glândulas Suprarrenais/patologia , Aromatase/metabolismo , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Receptor Nuclear Órfão DAX-1/genética , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Levetiracetam , Piracetam/farmacologia , Reação em Cadeia da Polimerase , Fator Esteroidogênico 1/genética , Estimulação Química
19.
Physiol Behav ; 101(1): 32-9, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20385156

RESUMO

Comparative studies on neural plasticity in non-mammalian vertebrates are increasingly promoted as an important complement to mammalian models. In teleost fishes the number of brain cells increases with age, body weight, and body length throughout life. Neurogenesis persists to a large degree, and both neuron replacement and net brain growth occur during adulthood. Whether environmental factors affect brain cell proliferation has however been scarcely investigated in this animal group. In the current study adult male zebrafish were kept in social isolation in different environments (enriched vs. barren) for one week. Telencephalic cell proliferation was investigated by proliferating cell nuclear antigen (PCNA) immunohistochemistry. Higher numbers of PCNA positive nuclei and significantly increased inter-individual variability was observed in fish kept in aquaria enriched with artificial plants and gravel. Zebrafish rapidly regained feed intake after transfer to social isolation. Whole-body cortisol levels were also generally low in isolated fish, although slightly elevated in fish from enriched environments. In summary, this study demonstrates that environmental alterations can rapidly alter cell cycle dynamics in the zebrafish brain. Furthermore, the results support the idea that mild short-term stressors and concomitant small increases in corticosteroid exposure stimulate brain cell proliferation.


Assuntos
Comportamento Animal/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Prosencéfalo/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo , Animais , Antracenos , Proliferação de Células , Meio Ambiente , Hidrocortisona/fisiologia , Masculino , Prosencéfalo/citologia , Isolamento Social , Estatísticas não Paramétricas , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...