Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 34(6): 1296-303, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23385062

RESUMO

The cytokine tumor necrosis factor (TNF) has pleiotropic functions both in normal physiology and disease. TNF signals by the virtue of two cell surface receptors, TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2). Exogenous TNF promotes experimental metastasis in some models, yet the underlying mechanisms are poorly understood. To study the contribution of host TNFR1 and TNFR2 on tumor cell progression and metastasis, we employed a syngeneic B16F10 melanoma mouse model of lung metastasis combined with in vivo bioluminescence imaging. Treatment of tumor-bearing mice with recombinant human TNF resulted in a significant increase in tumor burden and metastatic foci. This correlated with an increase in pulmonary regulatory CD4(+)/Foxp3(+) T cells. TNF caused an expansion of regulatory T (Treg) cells in vitro in a TNFR2-dependent manner. To assess the contribution of immune cell expression of endogenous TNF and its two receptors on B16F10 metastasis, we generated bone marrow chimeras by reconstituting wild-type mice with bone marrow from different knockout mice. Loss of either TNF or TNFR2 on immune cells resulted in decreased B16F10 metastasis and lower numbers of Treg cells within the lungs of these animals. Selective depletion of Treg cells attenuated metastasis even in conjunction with TNF treatment. We propose a novel mechanism in which TNF activates TNFR2 on Treg cells and thereby expands this immunosuppressive immune cell population. Loss of either TNF or TNFR2 prevents the accumulation of Treg cells and results in a less tolerogenic environment, enabling the immune system to control B16F10 tumor metastasis and growth.


Assuntos
Neoplasias Pulmonares/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antígenos CD4/biossíntese , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Forkhead/biossíntese , Neoplasias Pulmonares/secundário , Melanoma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Metástase Neoplásica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/imunologia , Fator de Necrose Tumoral alfa/metabolismo
2.
J Clin Invest ; 122(12): 4439-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143304

RESUMO

Understanding the spatiotemporal changes of cellular and molecular events within an organism is crucial to elucidate the complex immune processes involved in infections, autoimmune disorders, transplantation, and neoplastic transformation and metastasis. Here we introduce a novel multicolor light sheet fluorescence microscopy (LSFM) approach for deciphering immune processes in large tissue specimens on a single-cell level in 3 dimensions. We combined and optimized antibody penetration, tissue clearing, and triple-color illumination to create a method for analyzing intact mouse and human tissues. This approach allowed us to successfully quantify changes in expression patterns of mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and T cell responses in Peyer's patches following stimulation of the immune system. In addition, we employed LSFM to map individual T cell subsets after hematopoietic cell transplantation and detected rare cellular events. Thus, we present a versatile imaging technology that should be highly beneficial in biomedical research.


Assuntos
Imunidade Adaptativa , Imageamento Tridimensional/métodos , Animais , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Análise de Célula Única , Imagem Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...