Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Assist Reprod Genet ; 40(12): 2851-2863, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776437

RESUMO

PURPOSE: Glucose and redox metabolism characterization in mouse antral follicles with meiotically blocked oocytes, after in vitro follicle culture (IFC) from the early secondary stage. METHODS: Following IFC (10 days), oocytes, corresponding cumulus (CC), and granulosa cells (GC) were collected from antral follicles: (i) on day 9-immature, germinal vesicle (GV) stage; (ii) on day 10, after hCG/EGF stimulation-mature, metaphase II (MII) stage and meiotically blocked (MB) immature GV stage. The metabolic profiles of all samples (GV, MII, and MB) were compared by measuring changes in metabolites involved in glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), and redox activity via enzymatic spectrophotometric assays in each cell type. RESULTS: Within MB follicles, GCs drive higher levels of glycolysis and lactic acid fermentation (LAF) while oocytes exert more PPP activity. MB-oocytes had significantly larger diameters compared to day 9 GVs. MB follicles revealed limited metabolic changes in the somatic compartment compared to their GV counterparts (before stimulation). MB-CCs showed increased aconitase and glucose-6-phosphate dehydrogenase activities with lower malate levels comparted to GV-CCs. MB and MII in vitro grown follicles displayed comparable metabolic profiles, suggesting culture induces metabolic exhaustion regardless of the maturation stage. CONCLUSIONS: Current results suggest that in addition to impaired nuclear maturation, metabolic disruption is present in MB follicles. MB follicles either compensate with high levels of TCA cycle and PPP activities in CCs, or are unable to drive proper levels of aerobic metabolism, which might be due to the current culture conditions.


Assuntos
Glucose , Oócitos , Feminino , Animais , Camundongos , Glucose/metabolismo , Oócitos/metabolismo , Folículo Ovariano/metabolismo , Metáfase , Oxirredução
2.
Biol Reprod ; 109(4): 432-449, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531262

RESUMO

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

3.
Reprod Sci ; 30(2): 642-655, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35882717

RESUMO

Metadata analysis of public microarray datasets using bioinformatics tools has been successfully used in several biomedical fields in the search for biomarkers. In reproductive science, there is an urgent need for the establishment of oocyte quality biomarkers that could be used in the clinical environment to increase the chances of successful outcomes in treatment cycles. Adaptive cellular processes observed in cumulus oophorus cells reflect the conditions of the follicular microenvironment and may thus bring relevant information of oocyte's conditions. Here we analyzed human cumulus cells gene expression datasets in search of predictors of oocyte quality, a strategy which uncovered several cellular processes positively and negatively associated with embryo development and pregnancy potential. Secondly, the expression levels of genes that were present in the majority of processes observed were validated in house with clinical samples. Our data confirmed the association of the selected biomarkers with blastocyst formation and pregnancy potential rates, independently of patients' clinical characteristics such as diagnosis, age, BMI, and stimulation protocol applied. This study shows that bioinformatic analysis of cellular processes can be successfully used to elucidate possible oocyte quality biomarkers. Our data reinforces the need to consider clinical characteristics of patients when selecting relevant biomarkers to be used in the clinical environment and suggests a combination of positive (PTGS2) and negative (CYPB1) quality biomarkers as a robust strategy for a complementary oocyte selection tool, potentially increasing assisted reproduction success rates. Also, GPX4 expression as pregnancy potential biomarker is indicated here as a possibility for further investigations.


Assuntos
Células do Cúmulo , Oócitos , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Oócitos/metabolismo , Biomarcadores/metabolismo , Desenvolvimento Embrionário/genética , Ciclo-Oxigenase 2/metabolismo
4.
Biol Reprod ; 107(4): 998-1013, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35717588

RESUMO

Establishing an ideal human follicle culture system for oncofertility patients relies mainly on animal models since donor tissue is scarce and often of suboptimal quality. The in vitro system developed in our laboratory supports the growth of prepubertal mouse secondary follicles up to mature oocytes. Given the importance of glucose in preparing the oocyte for proper maturation, a baseline characterization of follicle metabolism both in the culture system and in vivo was carried out. Markers of glucose-related pathways (glycolysis, tricarboxylic acid [TCA] cycle, pentose phosphate pathway [PPP], polyol pathway, and hexosamine biosynthetic pathway), as well as the antioxidant capacity, were measured in the different follicle cell types by both enzymatic activities (spectrophotometric detection) and gene expression (qPCR). This study confirmed that in vivo the somatic cells, mainly granulosa, exhibit intense glycolytic activity, while oocytes perform PPP. Throughout the final maturation step, oocytes in vivo and in vitro showed steady levels for all the key enzymes and metabolites. On the other hand, ovulation triggers a boost of pyruvate and lactate uptake in cumulus cells in vivo, consumes reduced nicotinamide adenine dinucleotide phosphate, and increases TCA cycle and small molecules antioxidant capacity activities, while in vitro, the metabolic upregulation in all the studied pathways is limited. This altered metabolic pattern might be a consequence of cell exhaustion because of culture conditions, impeding cumulus cells to fulfill their role in providing proper support for acquiring oocyte competence.


Assuntos
Antioxidantes , Oócitos , Animais , Antioxidantes/metabolismo , Células do Cúmulo/metabolismo , Feminino , Glucose/metabolismo , Hexosaminas/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , NADP/metabolismo , Oócitos/metabolismo , Via de Pentose Fosfato/fisiologia , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos/metabolismo
5.
J Assist Reprod Genet ; 39(6): 1277-1295, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35469374

RESUMO

PURPOSE: To study whether the cumulus cell antioxidant system varies accordingly to patients clinical characteristics' as age, infertility diagnosis, BMI, and stimulation protocol applied and if the antioxidant profile of cumulus cells could be used as a predictor of embryo development. METHODS: A prospective study including 383 human cumulus samples provided by 191 female patients undergoing intracytoplasmic sperm injection during in vitro fertilization treatments from a local in vitro fertilization center and processed in university laboratories. Catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST) enzyme activity levels and reduced glutathione (GSH) levels were measured in cumulus oophorus cells individually collected from each aspirated cumulus-oocyte complex, and the results of each sample were compared considering the oocytes outcome after ICSI and patients clinical characteristics. A total of 223 other human cumulus samples from previous studies were submitted to a gene expression meta-analysis. RESULTS: The antioxidant system changes dramatically depending on patients' age, infertility diagnosis, stimulation protocol applied, and oocyte quality. SOD activity in cumulus cells revealed to be predictive of top-quality blastocysts for young patients with male factor infertility (P < 0.05), while GST levels were shown to be extremely influenced by infertility cause (P < 0.0001) and stimulation protocol applied (P < 0.05), but nonetheless, it can be used as a complementary tool for top-quality blastocyst prediction in patients submitted to intracytoplasmic sperm injection technique (ICSI) by male factor infertility (P < 0.05). CONCLUSION: Through a simple and non-invasive analysis, the evaluation of redox enzymes in cumulus cells could be used to predict embryo development, in a personalized matter in specific patient groups, indicating top-quality oocytes and improving success rates in in vitro fertilization treatments. TRIAL REGISTRATION: The trial was registered at UFRGS Research Ethics Committee and Plataforma Brasil under approval number 68081017.2.0000.5347 in June 6, 2019.


Assuntos
Células do Cúmulo , Infertilidade Masculina , Antioxidantes/metabolismo , Células do Cúmulo/fisiologia , Desenvolvimento Embrionário/genética , Feminino , Fertilização in vitro , Humanos , Infertilidade Masculina/metabolismo , Masculino , Oócitos/metabolismo , Estudos Prospectivos , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Biol Reprod ; 104(4): 902-913, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33480981

RESUMO

In vitro maturation (IVM) is an assisted reproduction technique with reduced hormone-related side-effects. Several attempts to implement IVM in routine practice have failed, primarily due to its relatively low efficiency compared with conventional in vitro fertilization (IVF). Recently, capacitation (CAPA)-IVM-a novel two-step IVM method-has improved the embryology outcomes through synchronizing the oocyte nuclear and cytoplasmic maturation. However, the efficiency gap between CAPA-IVM and conventional IVF is still noticeable especially in the numerical production of good quality embryos. Considering the importance of glucose for oocyte competence, its metabolization is studied within both in vivo and CAPA-IVM matured mouse cumulus-oocyte-complexes (COCs) through direct measurements in both cellular compartments, from transcriptional and translational perspectives, to reveal metabolic shortcomings within the CAPA-IVM COCs. These results confirmed that within in vivo COC, cumulus cells (CCs) are highly glycolytic, whereas oocytes, with low glycolytic activity, are deviating their glucose towards pentose phosphate pathway. No significant differences were observed in the CAPA-IVM oocytes compared with their in vivo counterparts. However, their CCs exhibited a precocious increase of glycolytic activity during the pre-maturation culture step and activity was decreased during the IVM step. Here, specific alterations in mouse COC glucose metabolism due to CAPA-IVM culture were characterized using direct measurements for the first time. Present data show that, while CAPA-IVM CCs are able to utilize glucose, their ability to support oocytes during final maturation is impaired. Future CAPA-IVM optimization strategies could focus on adjusting culture media energy substrate concentrations and/or implementing co-culture strategies.


Assuntos
Células do Cúmulo/metabolismo , Glucose/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Animais , Células Cultivadas , Feminino , Glicólise/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Oogênese/fisiologia
7.
Antioxid Redox Signal ; 32(8): 522-535, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31861967

RESUMO

Significance: Four decades have passed since the first successful human embryo conceived from a fertilization in vitro. Despite all advances, success rates in assisted reproduction techniques still remain unsatisfactory and it is well established that oxidative stress can be one of the major factors causing failure in in vitro fertilization (IVF) techniques. Recent Advances: In the past years, researchers have been shown details of the supportive role CCs play along oocyte maturation, development, and fertilization processes. Regarding redox metabolism, it is now evident that the synergism between gamete and somatic CCs is fundamental to further support a healthy embryo, since the oocyte lacks several defense mechanisms that are provided by the CCs. Critical Issues: There are many sources of reactive oxygen species (ROS) in the female reproductive tract in vivo that can be exacerbated (or aggravated) by pathological features. While an imbalance between ROS and antioxidants can result in oxidative damage, physiological levels of ROS are essential for oocyte maturation, ovulation, and early embryonic growth where they act as signaling molecules. At the event of an assisted reproduction procedure, the cumulus/oophorus complex is exposed to additional sources of oxidative stress in vitro. The cumulus cells (CCs) play essential roles in protecting the oocytes from oxidative damage. Future Directions: More studies are needed to elucidate redox biology in human CCs and oocyte. Also, randomized controlled trials will identify possible benefits of in vivo or in vitro administration of antioxidants for patients seeking IVF procedure.


Assuntos
Células do Cúmulo/fisiologia , Oócitos/fisiologia , Animais , Antioxidantes/metabolismo , Biologia/métodos , Células do Cúmulo/metabolismo , Feminino , Fertilização in vitro/métodos , Humanos , Oócitos/metabolismo , Oxirredução , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...