Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 218(4): 34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645425

RESUMO

Our understanding of the interaction of the large-scale heliosphere with the local interstellar medium (LISM) has undergone a profound change since the very earliest analyses of the problem. In part, the revisions have been a consequence of ever-improving and widening observational results, especially those that identified the entrance of interstellar material and gas into the heliosphere. Accompanying these observations was the identification of the basic underlying physics of how neutral interstellar gas and interstellar charged particles of different energies, up to and including interstellar dust grains, interacted with the temporal flows and electromagnetic fields of the heliosphere. The incorporation of these various basic effects into global models of the interaction, whether focused on neutral interstellar gas and pickup ions, energetic particles such as anomalous and galactic cosmic rays, or magnetic fields and large-scale flows, has profoundly changed our view of how the heliosphere and LISM interact. This article presents a brief history of the conceptual and observation evolution of our understanding of the interaction of the heliosphere with the local interstellar medium, up until approximately 1996.

2.
Space Sci Rev ; 218(4): 35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664862

RESUMO

The Voyager spacecraft have left the heliosphere and entered the interstellar medium, making the first observations of the termination shock, heliosheath, and heliopause. New Horizons is observing the solar wind in the outer heliosphere and making the first direct observations of solar wind pickup ions. This paper reviews the observations of the solar wind plasma and magnetic fields throughout the heliosphere and in the interstellar medium.

3.
Rev Sci Instrum ; 85(9): 091301, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273700

RESUMO

For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.

4.
Nature ; 404(6778): 576-8, 2000 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-10766234

RESUMO

Remote sensing observations and the direct sampling of material from a few comets have established the characteristic composition of cometary gas. This gas is ionized by solar ultraviolet radiation and the solar wind to form 'pick-up' ions, ions in a low ionization state that retain the same compositional signatures as the original gas. The pick-up ions are carried outward by the solar wind, and they could in principle be detected far from the coma (Sampling of pick-up ions has also been used to study interplanetary dust, Venus' tail and the interstellar medium.) Here we report the serendipitous detection of cometary pick-up ions, most probably associated with the tail of comet Hyakutake, at a distance of 3.4 AU from the nucleus. Previous observations have provided a wealth of physical and chemical information about a small sample of comets, but this detection suggests that remote sampling of comet compositions, and the discovery of otherwise invisible comets, may be possible.

5.
Science ; 268(5213): 1033-6, 1995 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-7754380

RESUMO

The high-speed solar wind streaming from the southern coronal hole was remarkably uniform and steady and was confined by a sharp boundary that extended to the corona and chromosphere. Charge state measurements indicate that the electron temperature in this coronal hole reached a maximum of about 1.5 million kelvin within 3 solar radii of the sun. This result, combined with the observed lack of depletion of heavy elements, suggests that an additional source of momentum is required to accelerate the polar wind.


Assuntos
Meio Ambiente Extraterreno , Sistema Solar , Elementos Químicos , Íons , Astronave , Análise Espectral/instrumentação
6.
Science ; 261(5117): 70-3, 1993 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17750548

RESUMO

Interstellar hydrogen ionized primarily by the solar wind has been detected by the SWICS instrument on the Ulysses spacecraft at a distance of 4.8 astronomical units from the sun. This "pick-up" hydrogen is identified by its distinct velocity distribution function, which drops abruptly at twice the local solar wind speed. From the measured fluxes of pick-up protons and singly charged helium, the number densities of neutral hydrogen and helium in the distant regions of the solar system are estimated to be 0.077 +/- 0.015 and 0.013 +/- 0.003 per cubic centimeter, respectively.

7.
Science ; 257(5076): 1535-9, 1992 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17776164

RESUMO

The ion composition in the Jovian environment was investigated with the Solar Wind Ion Composition Spectrometer on board Ulysses. A hot tenuous plasma was observed throughout the outer and middle magnetosphere. In some regions two thermally different components were identified. Oxygen and sulfur ions with several different charge states, from the volcanic satellite lo, make the largest contribution to the mass density of the hot plasma, even at high latitude. Solar wind particles were observed in all regions investigated. Ions from Jupiter's ionosphere were abundant in the middle magnetosphere, particularly in the highlatitude region on the dusk side, which was traversed for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...