Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Analyst ; 148(20): 5243-5254, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37727114

RESUMO

Digital PCRs (dPCRs) are widely used methods for the detection and quantification of rare abundant sequences relevant to fields such as liquid biopsy or oncology. In order to increase the information content and save valuable sample materials, there is a significant need for digital multiplexing methods that are easy to establish, analyse, and interpret, and ideally allow the usage of existing lab equipment. Herein, we present a novel reporter emission multiplexing approach for the digital PCR method (REM-dPCR), which meets these requirements. It further increases the multiplexing capacity of commercial dPCR devices. For example, we present a stepwise increase in multiplexing degrees from a monochrome two-plex assay in one detection channel to a six-plex REM-dPCR assay in a three-color dPCR device for KRAS/BRAF single nucleotide polymorphism (SNP) target sequences. The guidelines for the REM-dPCR design are presented, and the process from duplex to six-plex assay establishment, taking into account the target sequence-dependent effects on assay performance, is discussed. Furthermore, the assay-specific, sensitive and precise quantification of different fractions of KRAS mutant and wild-type DNA sequences in different ratios is demonstrated. To increase the device capacitance and the degree of multiplexing, the REM-dPCR uses the advantage of n target-independent reporter molecules in combination with target sequence-specific mediator probes. Different reporter types are labelled with fluorophores of different signal intensities but not necessarily different emission spectra. This leads to the generation of n independent single-positive populations in the dataspace, created by k detection channels, whereby n > k and n ≥ 2. By usage of target-independent but population-specific reporter types, a fixed set of six optimized signalling molecules could be defined. This reporter set enables the robust generation and precise differentiation of multiple fluorescence signals in dPCRs and can be transferred to new target panels. The set which enables stable signal generation and differentiation in a specified device would allow easy transfer to new target panels.

2.
Lab Chip ; 23(11): 2623-2632, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37158238

RESUMO

We present a centrifugal microfluidic cartridge for the eight-fold parallel generation of monodisperse water-in-oil droplets using standard laboratory equipment. The key element is interfacing centrifugal microfluidics with its design based on polar coordinates to the linear structures of standard high-throughput laboratory automation. Centrifugal step emulsification is used to simultaneously generate droplets from eight samples directly into standard 200 µl PCR 8-tube strips. To ensure minimal manual liquid handling, the design of the inlets allows the user to load the samples and the oil via a standard multichannel pipette. Simulation-based design of the cartridge ensures that the performance is consistent in each droplet generation unit despite the varying radial positions that originate from the interface to the linear oriented PCR 8-tube strip and from the integration of linear oriented inlet holes for the multichannel pipettes. Within 10 minutes, sample volumes of 50 µl per droplet generation unit are emulsified at a fixed rotation speed of 960 rpm into 1.47 × 105 monodisperse droplets with a mean diameter of 86 µm. The overall coefficient of variation (CV) of the droplet diameter was below 4%. Feasibility is demonstrated by an exemplary digital droplet polymerase chain reaction (ddPCR) assay which showed high linearity (R2 ≥ 0.999) across all of the eight tubes of the strip.


Assuntos
Microfluídica , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase , Emulsões/química , Água
3.
Pharmaceutics ; 14(7)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35890243

RESUMO

RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.

4.
Biosensors (Basel) ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448297

RESUMO

We demonstrate detection and quantification of bacterial load with a novel microfluidic one-pot wash-free fluorescence in situ hybridization (FISH) assay in droplets. The method offers minimal manual workload by only requiring mixing of the sample with reagents and loading it into a microfluidic cartridge. By centrifugal microfluidic step emulsification, our method partitioned the sample into 210 pL (73 µm in diameter) droplets for bacterial encapsulation followed by in situ permeabilization, hybridization, and signal detection. Employing locked nucleic acid (LNA)/DNA molecular beacons (LNA/DNA MBs) and NaCl-urea based hybridization buffer, the assay was characterized with Escherichia coli, Klebsiella pneumonia, and Proteus mirabilis. The assay performed with single-cell sensitivity, a 4-log dynamic range from a lower limit of quantification (LLOQ) at ~3 × 103 bacteria/mL to an upper limit of quantification (ULOQ) at ~3 × 107 bacteria/mL, anda linearity R2 = 0.976. The total time-to-results for detection and quantification was around 1.5 hours.


Assuntos
DNA , Microfluídica , Escherichia coli/genética , Hibridização in Situ Fluorescente/métodos , Microfluídica/métodos , Oligonucleotídeos
5.
Electrophoresis ; 43(4): 621-631, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34902175

RESUMO

Protein electrophoresis and immunoblotting are indispensable analytical tools for the characterization of proteins and posttranslational modifications in complex sample matrices. Owing to the lack of automation, commonly employed slab-gel systems suffer from high time demand, significant sample/antibody consumption, and limited reproducibility. To overcome these limitations, we developed a paper-based open microfluidic platform for electrophoretic protein separation and subsequent transfer to protein-binding membranes for immunoprobing. Electrophoresis microstructures were digitally printed into cellulose acetate membranes that provide mechanical stability while maintaining full accessibility of the microstructures for consecutive immunological analysis. As a proof-of-concept, we demonstrate separation of fluorescently labeled marker proteins in a wide molecular weight range (15-120 kDa) within only 15 min, reducing the time demand for the entire workflow (from sample preparation to immunoassay) to approximately one hour. Sample consumption was reduced 10- to 150-fold compared to slab-gel systems, owing to system miniaturization. Moreover, we successfully applied the paper-based approach to complex samples such as crude bacterial cell extracts. We envisage that this platform will find its use in protein analysis workflows for scarce and precious samples, providing a unique opportunity to extract profound immunological information from limited sample amounts in a fast fashion with minimal hands-on time.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Eletroforese , Immunoblotting , Microfluídica/métodos , Proteínas , Reprodutibilidade dos Testes
6.
J Mol Diagn ; 24(1): 57-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34757015

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in childhood. Minimal residual disease (MRD) monitoring is an important prognostic factor for ALL treatment response and patient stratification. MRD monitoring uses personalized real-time PCR to measure the amount of cancer cells among normal cells. Due to clonal tumor evolution or secondary rearrangement processes, MRD markers can disappear during treatment, leading to false-negative MRD results and wrong decision-making in personalized treatments. Therefore, monitoring of multiple MRD markers per patient is required. For the first time, the authors present personalized multiplex mediator probe PCR (MP PCR) for MRD monitoring in ALL. These assays can precisely quantify more MRD markers in less sample material. Therefore, clinical outcomes will be less affected by clonal tumor evolution. Personalized duplex MP PCR assays were developed for different genomic MRD markers, including immunoglobulin/T-cell receptor gene rearrangements, gene fusions, and gene deletions. One duplex assay was successfully applied in a prospective patient case and compared with hydrolysis probes. Moreover, the authors increased the multiplex level from duplex to 4-plex and still met the EuroMRD requirements for reliable quantification. In addition, the authors' MRD-MP design guidelines and multiplex workflow facilitate and accelerate MP PCR assay development. This helps the standardization of personal diagnostics.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Reação em Cadeia da Polimerase Multiplex , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real
7.
Cancers (Basel) ; 13(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830896

RESUMO

There is an increasing demand for optimization-free multiplex assays to rapidly establish comprehensive target panels for cancer monitoring by liquid biopsy. We present the mediator probe (MP) PCR for the quantification of the seven most frequent point mutations and corresponding wild types (KRAS and BRAF) in colorectal carcinoma. Standardized parameters for the digital assay were derived using design of experiments. Without further optimization, the limit of detection (LoD) was determined through spiking experiments with synthetic mutant DNA in human genomic DNA. The limit of blank (LoB) was measured in cfDNA plasma eluates from healthy volunteers. The 2-plex and 4-plex MP ddPCR assays showed a LoB of 0 copies/mL except for 4-plex KRAS G13D (9.82 copies/mL) and 4-plex BRAF V600E (16.29 copies/mL) and allele frequencies of 0.004% ≤ LoD ≤ 0.38% with R2 ≥ 0.98. The quantification of point mutations in patient plasma eluates (18 patients) during follow-up using the 4-plex MP ddPCR showed a comparable performance to the reference assays. The presented multiplex assays need no laborious optimization, as they use the same concentrations and cycling conditions for all targets. This facilitates assay certification, allows a fast and flexible design process, and is thus easily adaptable for individual patient monitoring.

8.
Biosensors (Basel) ; 11(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34821641

RESUMO

Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients' general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped microfluidic platform (OralDisk) compatible with chair-side use that enables analysis of non-invasively collected whole saliva samples and molecular-based detection of ten bacteria: seven periodontitis-associated (Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and three caries-associated (oral Lactobacilli, Streptococcus mutans, Streptococcus sobrinus). Each OralDisk test required 400 µL of homogenized whole saliva. The automated workflow included bacterial DNA extraction, purification and hydrolysis probe real-time PCR detection of the target pathogens. All reagents were pre-stored within the disk and sample-to-answer processing took < 3 h using a compact, customized processing device. A technical feasibility study (25 OralDisks) was conducted using samples from healthy, periodontitis and caries patients. The comparison of the OralDisk with a lab-based reference method revealed a ~90% agreement amongst targets detected as positive and negative. This shows the OralDisk's potential and suitability for inclusion in larger prospective implementation studies in dental care settings.


Assuntos
Cárie Dentária , Técnicas Analíticas Microfluídicas , Saúde Bucal , Periodontite , Saliva/microbiologia , Cárie Dentária/diagnóstico , Humanos , Periodontite/diagnóstico
9.
Anal Chem ; 93(30): 10538-10545, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34279918

RESUMO

Multiplexing of analyses is essential to reduce sample and reagent consumption in applications with large target panels. In applications such as cancer diagnostics, the required degree of multiplexing often exceeds the number of available fluorescence channels in polymerase chain reaction (PCR) devices. The combination of photobleaching-sensitive and photobleaching-resistant fluorophores of the same color can boost the degree of multiplexing by a factor of 2 per channel. The only additional hardware required to create virtual fluorescence color channels is a low-cost light-emitting diode (LED) setup for selective photobleaching. Here, we present an assay concept for fluorescence color multiplexing in up to 10 channels (five standard channels plus five virtual channels) using the mediator probe PCR with universal reporter (UR) fluorogenic oligonucleotides. We evaluate the photobleaching characteristic of 21 URs, which cover the whole spectral range from blue to crimson. This comprehensive UR data set is employed to demonstrate the use of three virtual channels in addition to the three standard channels of a commercial dPCR device (blue, green, and red) targeting cancer-associated point mutations (KRAS G12D and G12V). Moreover, a LOD (limit of detection) analysis of this assay confirms the high sensitivity of the multiplexing method (KRAS G12D: 16 DNA copies/reaction in the standard red channel and KRAS G12V: nine DNA copies/reaction in the virtual red channel). Based on the presented data set, optimal fluorogenic reporter combinations can be easily selected for the application-specific creation of virtual channels, enabling a high degree of multiplexing at low optical and technical effort.


Assuntos
Mutação Puntual , Proteínas Proto-Oncogênicas p21(ras) , Corantes Fluorescentes , Humanos , Fotodegradação , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas p21(ras)/genética
10.
Biosensors (Basel) ; 11(3)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800856

RESUMO

The rapid detection of pathogens in infected wounds can significantly improve the clinical outcome. Wound exudate, which can be collected in a non-invasive way, offers an attractive sample material for the detection of pathogens at the point-of-care (POC). Here, we report the development of a nucleic acid lateral flow immunoassay for direct detection of isothermally amplified DNA combined with fast sample preparation. The streamlined protocol was evaluated using human wound exudate spiked with the opportunistic pathogen Pseudomonas aeruginosa that cause severe health issues upon wound colonization. A detection limit of 2.1 × 105 CFU per mL of wound fluid was achieved, and no cross-reaction with other pathogens was observed. Furthermore, we integrated an internal amplification control that excludes false negative results and, in combination with the flow control, ensures the validity of the test result. The paper-based approach with only three simple hands-on steps has a turn-around time of less than 30 min and covers the complete analytical process chain from sample to answer. This newly developed workflow for wound fluid diagnostics has tremendous potential for reliable pathogen POC testing and subsequent target-oriented therapy.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Ácidos Nucleicos , Exsudatos e Transudatos/microbiologia , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Sistemas Automatizados de Assistência Junto ao Leito , Ferimentos e Lesões/microbiologia
11.
Micromachines (Basel) ; 12(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562822

RESUMO

This paper presents a universal point-of-care system for fully automated quantification of human T-cell lymphotropic virus type 1 (HTLV-1) proviral load, including genomic RNA, based on digital reverse RNA transcription and c-DNA amplification by MD LAMP (mediator displacement loop-mediated isothermal amplification). A disposable microfluidic LabDisk with pre-stored reagents performs automated nucleic acid extraction, reaction setup, emulsification, reverse transcription, digital DNA amplification, and quantitative fluorogenic endpoint detection with universal reporter molecules. Automated nucleic acid extraction from a suspension of HTLV-1-infected CD4+ T-lymphocytes (MT-2 cells) yielded 8 ± 7 viral nucleic acid copies per MT-2 cell, very similar to the manual reference extraction (7 ± 2 nucleic acid copies). Fully automated sample processing from whole blood spiked with MT-2 cells showed a comparable result of 7 ± 3 copies per MT-2 cell after a run time of two hours and 10 min.

12.
Anal Chem ; 93(5): 2854-2860, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33481582

RESUMO

We implement dual-volume centrifugal step emulsification on a single chip to extend the dynamic range of digital assays. Compared to published single-volume approaches, the range between the lower detection limit (LDL) and the upper limit of quantification (ULQ) increases by two orders of magnitude. In comparison to existing multivolume approaches, the dual-volume centrifugal step emulsification requires neither complex manufacturing nor specialized equipment. Sample metering into two subvolumes, droplet generation, and alignment of the droplets in two separate monolayers are performed automatically by microfluidic design. Digital quantification is demonstrated by exemplary droplet digital loop-mediated isothermal amplification (ddLAMP). Within 5 min, the reaction mix is split into subvolumes of 10.5 and 2.5 µL, and 2,5k and 176k droplets are generated with diameters of 31.6 ± 1.4 and 213.9 ± 7.5 µm, respectively. After 30 min of incubation, quantification over 5 log steps is demonstrated with a linearity of R2 ≥ 0.992.

13.
Lab Chip ; 20(14): 2549-2561, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32568322

RESUMO

We present an automated point-of-care testing (POCT) system for rapid detection of species- and resistance markers in methicillin-resistant Staphylococcus aureus (MRSA) at the level of single cells, directly from nasal swab samples. Our novel system allows clear differentiation between MRSA, methicillin-sensitive S. aureus (MSSA) and methicillin-resistant coagulase-negative staphylococci (MR-CoNS), which is not the case for currently used real-time quantitative PCR based systems. On top, the novel approach outcompetes the culture-based methods in terms of its short time-to-result (1 h vs. up to 60 h) and reduces manual labor. The walk-away test is fully automated on the centrifugal microfluidic LabDisk platform. The LabDisk cartridge comprises the unit operations swab-uptake, reagent pre-storage, distribution of the sample into 20 000 droplets, specific enzymatic lysis of Staphylococcus spp. and recombinase polymerase amplification (RPA) of species (vicK) - and resistance (mecA) -markers. LabDisk actuation, incubation and multi-channel fluorescence detection is demonstrated with a clinical isolate and spiked nasal swab samples down to a limit of detection (LOD) of 3 ± 0.3 CFU µl-1 for MRSA. The novel approach of the digital single cell detection is suggested to improve hospital admission screening, timely decision making, and goal-oriented antibiotic therapy. The implementation of a higher degree of multiplexing is required to translate the results into clinical practice.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Proteínas de Bactérias , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Testes Imediatos , Infecções Estafilocócicas/diagnóstico , Staphylococcus aureus/genética
14.
Molecules ; 25(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326221

RESUMO

We present a versatile tool for the generation of monodisperse water-in-fluorinated-oil droplets in standard reaction tubes by centrifugal step emulsification. The microfluidic cartridge is designed as an insert into a standard 2 mL reaction tube and can be processed in standard laboratory centrifuges. It allows for droplet generation and subsequent transfer for any downstream analysis or further use, does not need any specialized device, and manufacturing is simple because it consists of two parts only: A structured substrate and a sealing foil. The design of the structured substrate is compatible to injection molding to allow manufacturing at large scale. Droplets are generated in fluorinated oil and collected in the reaction tube for subsequent analysis. For sample sizes up to 100 µL with a viscosity range of 1 mPa·s-4 mPa·s, we demonstrate stable droplet generation and transfer of more than 6 × 105 monodisperse droplets (droplet diameter 66 µm ± 3 µm, CV ≤ 4%) in less than 10 min. With two application examples, a digital droplet polymerase chain reaction (ddPCR) and digital droplet loop mediated isothermal amplification (ddLAMP), we demonstrate the compatibility of the droplet production for two main amplification techniques. Both applications show a high degree of linearity (ddPCR: R2 ≥ 0.994; ddLAMP: R2 ≥ 0.998), which demonstrates that the cartridge and the droplet generation method do not compromise assay performance.


Assuntos
Centrifugação , Emulsões , Gotículas Lipídicas , Técnicas Analíticas Microfluídicas , Bioensaio/instrumentação , Bioensaio/métodos , Bioensaio/normas , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/normas , Microfluídica/instrumentação , Microfluídica/métodos , Microfluídica/normas , Reação em Cadeia da Polimerase/métodos , Padrões de Referência , Viscosidade , Fluxo de Trabalho
15.
Sensors (Basel) ; 20(5)2020 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-32121410

RESUMO

Inkjet technology as a maskless, direct-writing technology offers the potential for structured deposition of functional materials for the realization of electrodes for, e.g., sensing applications. In this work, electrodes were realized by inkjet-printing of commercial nanoparticle gold ink on planar substrates and, for the first time, onto the 2.5D surfaces of a 0.5 mm-deep microfluidic chamber produced in cyclic olefin copolymer (COC). The challenges of a poor wetting behavior and a low process temperature of the COC used were solved by a pretreatment with oxygen plasma and the combination of thermal (130 °C for 1 h) and photonic (955 mJ/cm²) steps for sintering. By performing the photonic curing, the resistance could be reduced by about 50% to 22.7 µΩ cm. The printed gold structures were mechanically stable (optimal cross-cut value) and porous (roughness factors between 8.6 and 24.4 for 3 and 9 inkjet-printed layers, respectively). Thiolated DNA probes were immobilized throughout the porous structure without the necessity of a surface activation step. Hybridization of labeled DNA probes resulted in specific signals comparable to signals on commercial screen-printed electrodes and could be reproduced after regeneration. The process described may facilitate the integration of electrodes in 2.5D lab-on-a-chip systems.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Prata/química , Dispositivos Lab-On-A-Chip , Temperatura
16.
Biosens Bioelectron ; 154: 112069, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056964

RESUMO

Driven by the vision of robust and portable, yet sensitive DNA detection systems for point-of-need applications, the development of electrochemical DNA sensing principles has been of high interest. Many different principles have been developed and these are regularly reviewed. However, the maturity of electrochemical principles and their ability to produce competitive real-world applications is rarely assessed. In this review, general electrochemical DNA sensing principles are briefly introduced and categorized into heterogeneous vs. homogeneous approaches, and then the subcategories label-free vs. labeled and reagent-less vs. reagent-dependent principles. We then focus on reviewing the electrochemical sensing principles implemented in DNA detection systems, which are commercially available or close to market entry, considering the complete analysis process, automation and the field of application. This allows us to outline and discuss which principles have proved suitable for which kinds of applications, as well as the stage of integration and automation. Examples from all the identified categories of electrochemical DNA sensing principles have found application in commercial detection systems or advanced prototypes. Various applications have already been demonstrated, ranging from on-site skin care testing, to food safety to the most frequent in vitro diagnostic tests, partially conducted in automated sample-to-answer devices. Our review is intended to enable researchers in areas related to electrochemistry, biochemistry or microfluidics to assess the commercial state of the art of electrochemical nucleic acid testing, and the interdisciplinary challenges for further improvements.


Assuntos
Técnicas Biossensoriais , DNA/isolamento & purificação , Eletroquímica , Microfluídica/métodos , DNA/química , Testes Diagnósticos de Rotina , Humanos
17.
Analyst ; 145(5): 1950-1960, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31971531

RESUMO

Correction for 'Review: a comprehensive summary of a decade development of the recombinase polymerase amplification' by Jia Li et al., Analyst, 2019, 144, 31-67.

18.
Emerg Infect Dis ; 26(2): 282-288, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961303

RESUMO

Yaws, a neglected tropical disease caused by the bacterium Treponema pallidum subspecies pertenue, manifests as ulcerative skin lesions. Nucleic acid amplification tests, like loop-mediated isothermal amplification (LAMP), are versatile tools to distinguish yaws from infections that cause similar skin lesions, primarily Haemophilus ducreyi. We developed a novel molecular test to simultaneously detect T. pallidum and H. ducreyi based on mediator displacement LAMP. We validated the T. pallidum and H. ducreyi LAMP (TPHD-LAMP) by testing 293 clinical samples from patients with yaws-like lesions. Compared with quantitative PCR, the TPHD-LAMP demonstrated high sensitivity and specificity for T. pallidum (84.7% sensitivity, 95.7% specificity) and H. ducreyi (91.6% sensitivity, 84.8% specificity). This novel assay provided rapid molecular confirmation of T. pallidum and H. ducreyi DNA and might be suitable for use at the point of care. TPHD-LAMP could support yaws eradication by improving access to molecular diagnostic tests at the district hospital level.


Assuntos
Cancroide/diagnóstico , Haemophilus ducreyi/isolamento & purificação , Treponema pallidum/isolamento & purificação , Bouba/diagnóstico , Cancroide/microbiologia , Criança , Feminino , Gana , Humanos , Masculino , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Papua Nova Guiné , Sensibilidade e Especificidade , Bouba/microbiologia
19.
Lab Chip ; 20(1): 54-63, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31774415

RESUMO

The alarming dynamics of antibiotic-resistant infections calls for the development of rapid and point-of-care (POC) antibiotic susceptibility testing (AST) methods. Here, we demonstrated the first completely stand-alone microfluidic system that allowed the execution of digital enumeration of bacteria and digital antibiograms without any specialized microfluidic instrumentation. A four-chamber gravity-driven step emulsification device generated ∼2000 monodisperse 2 nanoliter droplets with a coefficient of variation of 8.9% of volumes for 95% of droplets within less than 10 minutes. The manual workload required for droplet generation was limited to the sample preparation, the deposition into the sample inlet of the chip and subsequent orientation of the chip vertically without an additional pumping system. The use of shallow chambers imposing a 2D droplet arrangement provided superior stability of the droplets against coalescence and minimized the leakage of the reporter viability dye between adjacent droplets during long-term culture. By using resazurin as an indicator of the growth of bacteria, we were also able to reduce the assay time to ∼5 hours compared to 20 hours using the standard culture-based test.


Assuntos
Antibacterianos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Gravitação , Dispositivos Lab-On-A-Chip , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Emulsões/química , Imagem Óptica/instrumentação , Tamanho da Partícula
20.
Langmuir ; 35(30): 9809-9815, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283246

RESUMO

We demonstrate that buoyancy in centrifugal step emulsification enables substantially higher generation rates of monodisperse droplets compared to pressure driven set-ups. Step emulsification in general can produce droplets in comparatively simple systems (only one moving liquid) with a low CV of <5% in droplet diameter and with a minimum dead volume. If operated below a critical capillary number, the droplet diameter is defined by geometry and surface forces only. Above that critical capillary number, however, jetting occurs, leading to an increased droplet diameter and CV. Consequently, generation rates of monodisperse droplets are limited in pressure-driven systems. In this paper, we show that centrifugal step emulsification can overcome this limitation by applying sufficient buoyancy to the system. The buoyancy, induced by the centrifugal field and a density difference of the continuous and disperse phase, supports droplet necking by pulling the forming droplet away from the nozzle. The influence of buoyancy is studied using specific microfluidic designs that allow for supplying different buoyancies to the same droplet generation rates. For a droplet diameter of 100 µm, droplet generation at rates above 2.8k droplets per second and nozzle were reached, which is an increase of more than a factor of 8 in comparison to pressure-driven systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...