Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hered ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814752

RESUMO

Small, fragmented or isolated populations are at risk of population decline due to fitness costs associated with inbreeding and genetic drift. The King Island scrubtit Acanthornis magna greeniana is a critically endangered subspecies of the nominate Tasmanian scrubtit A. m. magna, with an estimated population of < 100 individuals persisting in three patches of swamp forest. The Tasmanian scrubtit is widespread in wet forests on mainland Tasmania. We sequenced the scrubtit genome using PacBio HiFi and undertook a population genomic study of the King Island and Tasmanian scrubtits using a double-digest restriction site-associated DNA (ddRAD) dataset of 5,239 SNP loci. The genome was 1.48 Gb long, comprising 1,518 contigs with an N50 of 7.715 Mb. King Island scrubtits formed one of four overall genetic clusters, but separated into three distinct subpopulations when analysed independently of the Tasmanian scrubtit. Pairwise FST values were greater among the King Island scrubtit subpopulations than among most Tasmanian scrubtit subpopulations. Genetic diversity was lower and inbreeding coefficients were higher in the King Island scrubtit than all except one of the Tasmanian scrubtit subpopulations. We observed crown baldness in 8/15 King Island scrubtits, but 0/55 Tasmanian scrubtits. Six loci were significantly associated with baldness, including one within the DOCK11 gene which is linked to early feather development. Contemporary gene flow between King Island scrubtit subpopulations is unlikely, with further field monitoring required to quantify the fitness consequences of its small population size, low genetic diversity and high inbreeding. Evidence-based conservation actions can then be implemented before the taxon goes extinct.

2.
Heredity (Edinb) ; 131(5-6): 374-386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37806995

RESUMO

Using genetic information to develop and implement conservation programs is vital for maintaining biodiversity and ecosystem resilience. Evaluation of the genetic variability within and among remnant populations can inform management of both natural and translocated populations to maximise species' adaptive potential, mitigate negative impacts of inbreeding, and subsequently minimise risk of extinction. Here we use reduced representation sequencing to undertake a genetic assessment of the golden bandicoot (Isoodon auratus), a threatened marsupial endemic to Australia. The currently recognised taxon consists of three subspecies distributed among multiple natural and translocated populations. After confirming the genetic distinctiveness of I. auratus from two closely related taxa, I. fusciventer and I. macrourus, we identified four genetic clusters within I. auratus. These clusters exhibited substantial genetic differentiation (pairwise FST values ranging from 0.18 to 0.65, pairwise DXY ranging from 0.1 to 0.168), reflecting long-term isolation of some populations on offshore islands and the influence of genetic drift. Mainland natural populations in the Kimberley region had the highest genetic diversity and the largest contribution to overall allelic and gene diversity compared to both natural and translocated island populations. A population translocated to Guluwuru Island in the Northern Territory had the lowest genetic diversity. Our data suggest that island populations can appear genetically unique due to genetic drift and this needs to be taken into account when considering genetic diversity in conservation efforts to maintain overall genetic diversity of the species. We effectively demonstrate how genomic information can guide practical conservation planning, especially when declining species are represented by multiple isolated populations.


Assuntos
Variação Genética , Genética Populacional , Ecossistema , Metagenômica , Deriva Genética , Conservação dos Recursos Naturais
3.
Heredity (Edinb) ; 130(5): 278-288, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36899176

RESUMO

Genomic diversity is a fundamental component of Earth's total biodiversity, and requires explicit consideration in efforts to conserve biodiversity. To conserve genomic diversity, it is necessary to measure its spatial distribution, and quantify the contribution that any intraspecific evolutionary lineages make to overall genomic diversity. Here, we describe the range-wide population genomic structure of a threatened Australian rodent, the black-footed tree-rat (Mesembriomys gouldii), aiming to provide insight into the timing and extent of population declines across a large region with a dearth of long-term monitoring data. By estimating recent trajectories in effective population sizes at four localities, we confirm widespread population decline across the species' range, but find that the population in the peri-urban area of the Darwin region has been more stable. Based on current sampling, the Melville Island population made the greatest contribution to overall allelic richness of the species, and the prioritisation analysis suggested that conservation of the Darwin and Cobourg Peninsula populations would be the most cost-effective scenario to retain more than 90% of all alleles. Our results broadly confirm current sub-specific taxonomy, and provide crucial data on the spatial distribution of genomic diversity to help prioritise limited conservation resources. Along with additional sampling and genomic analysis from the far eastern and western edges of the black-footed tree-rat distribution, we suggest a range of conservation and research priorities that could help improve black-footed tree-rat population trajectories at large and fine spatial scales, including the retention and expansion of structurally complex habitat patches.


Assuntos
Conservação dos Recursos Naturais , Metagenômica , Animais , Ratos , Austrália , Biodiversidade , Ecossistema
4.
Mol Ecol ; 31(21): 5468-5486, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36056907

RESUMO

Mammal declines across northern Australia are one of the major biodiversity loss events occurring globally. There has been no regional assessment of the implications of these species declines for genomic diversity. To address this, we conducted a species-wide assessment of genomic diversity in the northern quoll (Dasyurus hallucatus), an Endangered marsupial carnivore. We used next generation sequencing methods to genotype 10,191 single nucleotide polymorphisms (SNPs) in 352 individuals from across a 3220-km length of the continent, investigating patterns of population genomic structure and diversity, and identifying loci showing signals of putative selection. We found strong heterogeneity in the distribution of genomic diversity across the continent, characterized by (i) biogeographical barriers driving hierarchical population structure through long-term isolation, and (ii) severe reductions in diversity resulting from population declines, exacerbated by the spread of introduced toxic cane toads (Rhinella marina). These results warn of a large ongoing loss of genomic diversity and associated adaptive capacity as mammals decline across northern Australia. Encouragingly, populations of the northern quoll established on toad-free islands by translocations appear to have maintained most of the initial genomic diversity after 16 years. By mapping patterns of genomic diversity within and among populations, and investigating these patterns in the context of population declines, we can provide conservation managers with data critical to informed decision-making. This includes the identification of populations that are candidates for genetic management, the importance of remnant island and insurance/translocated populations for the conservation of genetic diversity, and the characterization of putative evolutionarily significant units.


Assuntos
Marsupiais , Metagenômica , Animais , Bufo marinus/genética , Comportamento Predatório , Marsupiais/genética , Austrália/epidemiologia
5.
PLoS One ; 16(10): e0259124, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34714831

RESUMO

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant 'islands'. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which 'islands' of habitat are most in need of management and protection.


Assuntos
Conservação dos Recursos Naturais/métodos , Elapidae/genética , Biomarcadores Ambientais , Animais , Deriva Genética , Variação Genética , Genética Populacional , Austrália Ocidental , Áreas Alagadas
6.
Sci Rep ; 11(1): 5380, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686113

RESUMO

Global wildlife trade is a multibillion-dollar industry and a significant driver of vertebrate extinction risk. Yet, few studies have quantified the impact of wild harvesting for the illicit pet trade on populations. Long-lived species, by virtue of their slow life history characteristics, may be unable to sustain even low levels of collecting. Here, we assessed the impact of illegal collecting on populations of endangered broad-headed snakes (Hoplocephalus bungaroides) at gated (protected) and ungated (unprotected) sites. Because broad-headed snakes are long-lived, grow slowly and reproduce infrequently, populations are likely vulnerable to increases in adult mortality. Long-term data revealed that annual survival rates of snakes were significantly lower in the ungated population than the gated population, consistent with the hypothesis of human removal of snakes for the pet trade. Population viability analysis showed that the ungated population has a strongly negative population growth rate and is only prevented from ultimate extinction by dispersal of small numbers of individuals from the gated population. Sensitivity analyses showed that the removal of a small number of adult females was sufficient to impose negative population growth and suggests that threatened species with slow life histories are likely to be especially vulnerable to illegal collecting.


Assuntos
Conservação dos Recursos Naturais , Elapidae/fisiologia , Espécies em Perigo de Extinção , Animais , Humanos
7.
Heredity (Edinb) ; 126(5): 763-775, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33664461

RESUMO

Conservation management is improved by incorporating information about the spatial distribution of population genetic diversity into planning strategies. Northern Australia is the location of some of the world's most severe ongoing declines of endemic mammal species, yet we have little genetic information from this regional mammal assemblage to inform a genetic perspective on conservation assessment and planning. We used next-generation sequencing data from remnant populations of the threatened brush-tailed rabbit-rat (Conilurus penicillatus) to compare patterns of genomic diversity and differentiation across the landscape and investigate standardised hierarchical genomic diversity metrics to better understand brush-tailed rabbit-rat population genomic structure. We found strong population structuring, with high levels of differentiation between populations (FST = 0.21-0.78). Two distinct genomic lineages between the Tiwi Islands and mainland are also present. Prioritisation analysis showed that one population in both lineages would need to be conserved to retain at least ~80% of alleles for the species. Analysis of standardised genomic diversity metrics showed that approximately half of the total diversity occurs among lineages (δ = 0.091 from grand total γ = 0.184). We suggest that a focus on conserving remnant island populations may not be appropriate for the preservation of species-level genomic diversity and adaptive potential, as these populations represent a small component of the total diversity and a narrow subset of the environmental conditions in which the species occurs. We also highlight the importance of considering both genomic and ecological differentiation between source and receiving populations when considering translocations for conservation purposes.


Assuntos
Genética Populacional , Metagenômica , Roedores , Animais , Austrália , Conservação dos Recursos Naturais , Variação Genética , Genoma , Genômica , Mamíferos , Roedores/genética
8.
Mol Ecol ; 30(10): 2248-2261, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740830

RESUMO

Understanding local adaptation is critical for conservation management under rapidly changing environmental conditions. Local adaptation inferred from genotype-environment associations may show different genomic patterns depending on the spatial scale of sampling, due to differences in the slope of environmental gradients and the level of gene flow. We compared signatures of local adaptation across the genome of mountain ash (Eucalyptus regnans) at two spatial scales: A species-wide data set and a topographically-complex subregional data set. We genotyped 367 individual trees at over 3700 single-nucleotide polymorphisms (SNPs), quantified patterns of spatial genetic structure among populations, and used two analytical methods to identify loci associated with at least one of three environmental variables at each spatial scale. Together, the analyses identified 549 potentially adaptive SNPs at the subregion scale, and 435 SNPs at the range-wide scale. A total of 39 genic or near-genic SNPs, associated with 28 genes, were identified at both spatial scales, although no SNP was identified by both methods at both scales. We observed that nongenic regions had significantly higher homozygote excess than genic regions, possibly due to selective elimination of inbred genotypes during stand development. Our results suggest that strong environmental selection occurs in mountain ash, and that the identification of putatively adaptive loci can differ substantially depending on the spatial scale of analyses. We also highlight the importance of multiple adaptive genetic architectures for understanding patterns of local adaptation across large heterogenous landscapes, with comparison of putatively adaptive loci among spatial scales providing crucial insights into the process of adaptation.


Assuntos
Seleção Genética , Árvores , Aclimatação , Adaptação Fisiológica/genética , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único/genética
9.
Int J Parasitol Parasites Wildl ; 11: 32-39, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31879593

RESUMO

Tiger snakes (Notechis scutatus) in wetlands of South-West Western Australia (SW WA) are commonly parasitised by the nematode Ophidascaris pyrrhus. Host-parasite interactions are complex and can potentially be impacted by factors such as urbanisation or climate. We assessed whether urbanisation, distance to wetland sites, and climatic factors have influenced parasitism in tiger snakes from specimens collected over the last century. We dissected 91 museum specimens of tiger snakes across SW WA and counted gastrointestinal nematodes. Binomial generalised linear modelling, with presence/absence of nematodes as a response variable, was used to determine which factors were driving infection. Model selection using AICc values showed that proximity to wetlands, rainfall and topographic wetness were most strongly associated with the probability of infection of snakes by nematodes. We also found a slight positive correlation between nematode abundance and annual mean maximum temperature. We found no significant influence of distance to urban centre on nematode burdens; however, our results suggest that water-related variables are a key driver of nematode parasitism in tiger snakes in SW WA. We also suggest that urbanisation is still of interest as its role in wetland and climate modification may increase parasitism in wetland snakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...