Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 63(8): 2909-19, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22330897

RESUMO

Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their role in the control of the diurnal rhythm of malic and citric acids to a differential degree. In plants of both CAM types, the oxidative capacity of mitochondria, as well as the activity of CAM-linked mitochondrial enzymes, and of the alternative and the rotenone-resistant pathways of substrate oxidation were compared. Furthermore, a C3 succulent was included, as well as both C3 and CAM forms of Mesembryanthemum crystallinum during a salt-induced C3-to-CAM shift. Mitochondria of PEPCK-type CAM plants exhibited a lower activity of malate oxidation, ratio of malate to succinate oxidation, and activity of mitochondrial NAD-ME. With the exception of Kalanchoë daigremontiana, leaf mitochondria of all other CAM species were highly sensitive to cyanide (80-100%), irrespective of the oxidant used. This indicates that the alternative oxidase is not of general importance in CAM. By contrast, rotenone-insensitive substrate oxidation was very high (50-90%) in all CAM species. This is the first comparison of the rotenone-insensitive pathway of respiration in plants with different CAM-types. The results of this study confirm that mitochondria are involved in the control of CAM to different degrees in the two CAM types, and they highlight the multiple roles of mitochondria in CAM.


Assuntos
Citocromos/metabolismo , Malato Desidrogenase/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Plantas/enzimologia , Rotenona/farmacologia , Acetilcoenzima A/farmacologia , Ácidos Carboxílicos , Respiração Celular/efeitos dos fármacos , Cianetos/toxicidade , Magnésio/farmacologia , Malatos/metabolismo , Manganês/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , NAD/metabolismo , NADP/metabolismo , Osmose/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Plantas/efeitos dos fármacos , Piruvatos/farmacologia , Especificidade da Espécie , Ácido Succínico/metabolismo
2.
Funct Plant Biol ; 32(5): 389-395, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32689141

RESUMO

After more than 20 years of extensive study we found clear evidence that Welwitschia mirabilis Hook.f. is able to take up CO2 at night in both of its natural ecosystems, the Namib desert and the Mopane savannah, and hence should be classified a crassulacean acid metabolism (CAM) plant. At six different sites, 85 W. mirabilis plants were marked and the growth rate of their leaves and leaf ribbons were measured over a period of 2.5 years. The slowest and the fastest growing plant of these 85 plants were from the Mopane savannah and from the north-west of the Brandberg massif, respectively. These were selected for the gas-exchange measurements of this study. Within the course of a year nocturnal CO2 uptake was found only in December and January when the nights were shortest and plants were flowering. CO2 uptake during the night was not pronounced and never accounted for more than 4% of the total CO2 uptake over 24 h. Maximum rates of nocturnal CO2 uptake never exceeded 0.1 µmol m-2 s-1 for the slowest and 0.2 µmol m-2 s-1 for the fastest growing plant. Neither water availability in the soil nor night temperature was found to determine nocturnal CO2 uptake in terms known for CAM plants. Regardless of the growing site all leaves of W. mirabilis contained high amounts of malic and citric acid. Small increases of acids over night as calculated from the gas exchange measurements are masked by the extremely uneven distribution of these acids in the leaves, making the feature of an overnight malic or citric acid accumulation an unsuited test for CAM in W. mirabilis. An increase in 13C discrimination with increasing distance from the coast was confirmed. Photorespiration was extremely high and followed air temperature around the leaf. Although the debate whether or not W. mirabilis is a CAM plant can be closed, no answer could be given why W. mirabilis makes so little use of CAM.

3.
Physiol Plant ; 102(1): 148-154, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35359119

RESUMO

The ability of photosynthesis and CAM to acclimate to low (220 µmol m-2 s-1 ; LL) and relatively high (550 µmol m-2 s-1 ; HL) photosynthetic photon flux densities (PPFD) was investigated in the CAM-cycling species Delosperma tradescantioides by means of CO2 gas exchange and chlorophyll fluorescence analysis. Furthermore, the influence of short-term drought on malic acid accumulation and the activity of photosystem II (PSII) was studied to assess the possible interactions between drought and the prevailing PPFD in this species. HL plants showed features of sun versus shade acclimation relative to LL plants. Nocturnal malic acid accumulation (Δ-malate) and leaf water content also tended to be higher in HL plants. Irrespective of the PPFD during growth, the weak Δ-malate doubled within 3 days of drought. Despite largely restricted CO2 uptake, photosynthetic activity as estimated from fluorescence analysis declined only ca 5%. After 7 days of drought, when plants showed CAM-idling and Δ-malate had decreased again, potential carbon assimilation was still ca 84% of that in well-watered plants and remained relatively constant throughout the day. Decarboxylation of malic acid accounted for ca 23% of potential assimilation assuming total oxidation of a maximum portion of this organic acid. Drought did not affect predawn maximum photochemical efficiency (Fv /Fm ). Nonphotochemical quenching (qN) increased (24%) in response to desiccation and resulted in a more or less constant reduction state of PSII. This increase in qN resulted mainly from the change in its fast-relaxing component (qNF), while the slow component (qNS) was significant only at or above saturating PPFD in both HL and LL plants. The photon response characteristics of PSII, which differed between LL and HL plants, were unaffected by short-term drought. Photon harvesting and photon use were always adjusted to guarantee a low reduction state of PSII. Results suggest that in both LL and HL plants CAM-cycling may help to stabilize photosynthesis but to a large extent by other means than simply providing internally derived CO2 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...