Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chemosphere ; 317: 137874, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36646183

RESUMO

Due to their extensive use and high biological activity, insecticides largely contribute to loss of biodiversity and environmental pollution. The regulation of insecticides by authorities is mainly focused on lethal concentrations. However, sub-lethal effects such as alterations in behavior and neurodevelopment can significantly affect the fitness of individual fish and their population dynamics and therefore deserve consideration. Moreover, it is important to understand the impact of exposure timing during development, about which there is currently a lack of relevant knowledge. Here, we investigated whether there are periods during neurodevelopment of fish, which are particularly vulnerable to insecticide exposure. Therefore, we exposed zebrafish embryos to six different insecticides with cholinergic mode of action for 24 h during different periods of neurodevelopment and measured locomotor output using an age-matched behavior assay. We used the organophosphates diazinon and dimethoate, the carbamates pirimicarb and methomyl as well as the neonicotinoids thiacloprid and imidacloprid because they are abundant in the environment and cholinergic signaling plays a major role during key processes of neurodevelopment. We found that early embryonic motor behaviors, as measured by spontaneous tail coiling, increased upon exposure to most insecticides, while later movements, measured through touch-evoked response and a light-dark transition assay, rather decreased for the same insecticides and exposure duration. Moreover, the observed effects were more pronounced when exposure windows were temporally closer to the performing of the respective behavioral assay. However, the measured behavioral effects recovered after a short period, indicating that none of the exposure windows chosen here are particularly critical, but rather that insecticides acutely interfere with neuronal function at all stages as long as they are present. Overall, our results contribute to a better understanding of risks posed by cholinergic insecticides to fish and provide an important basis for the development of safe regulations to improve environmental health.


Assuntos
Inseticidas , Animais , Inseticidas/toxicidade , Peixe-Zebra , Diazinon , Colinérgicos , Fenótipo
2.
Environ Sci Technol ; 56(12): 8449-8462, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35575681

RESUMO

Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.


Assuntos
Inseticidas , Animais , Colinérgicos/farmacologia , Inseticidas/toxicidade , Larva , Metomil/farmacologia , Neonicotinoides , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...