Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.795
Filtrar
1.
AIDS ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007922

RESUMO

INTRODUCTION: The window period, defined as HIV nucleic acid test (NAT) reactivity but Western blot (WB) test inconclusive, is garnering more attention. Improving the detection efficiency of HIV high-risk populations in the window period is critical to reducing the risk of unanticipated transmission. The purpose of this study was to create an additional strategy for distinguishing indeterminate HIV infection cases. METHODS: Based on WB follow-up results, the individuals in this study were divided into persons in the HIV window period and persons without HIV. Plasma was analyzed using quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS) to detect differentially expressed proteins (DEPs). The biological implications of these DEPs were investigated using enrichment analysis. Protein-protein interaction (PPI) analysis and LASSO regression were used to identify key proteins. The calibration curve, decision curve, and nomogram were utilized to create the model. RESULTS: Fifty-seven DEPs were screened out, with 33 up-regulated and 24 down-regulated in persons with HIV at window period. The most important Gene Ontology (GO) enrichment items are oxidoreductase activity and heme binding. Oxidoreductases account for half of the 10 main proteins identified from various DEPs. An auxiliary diagnostic model comprised of Peroxiredoxin-2 (P32119), Band 3 anion transport protein (P02730), and Histone H2A type 1 (P0C0S8) was developed. The results of the confusion matrix parameters revealed that this diagnostic approach had strong practicability in distinguishing indeterminate HIV infection cases. CONCLUSIONS: The three DEPs identified and predicted by proteomics are useful for the supplemental identification of persons in the HIV window period.

2.
J Environ Manage ; 366: 121775, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991343

RESUMO

Grazing exclusion (GE), as an effective strategy for revitalizing degraded grasslands, possesses the potential to increase ecosystem respiration (Re) and significantly influence the capacity of grassland soils to sequester carbon. However, our current grasp of Re dynamics in response to varying durations of GE, particularly in the context of precipitation fluctuations, remains incomplete. To fill this knowledge gap, we conducted a monitoring of Re over a 40-year GE chronosequence within Inner Mongolia temperate typical steppe across two distinct hydrologically years. Overall, Re exhibited a gradual saturation curve and an increasing trend with the duration of GE in the wet year of 2021 and the normal precipitation year of 2022, respectively. The variance primarily stemmed from relatively higher microbial biomass carbon observed in the short-term GE during 2022 in contrast to 2021. Moreover, the impacts of GE on the sensitivities of Re to moisture and temperature were intricately tied to precipitation patterns. increasing significantly with prolonged GE duration in 2022 but not in 2021. Our study highlights the intricate interplay between GE duration, precipitation variability, and Re dynamics. This deeper understanding enhances our ability to predict and manage carbon cycling within typical steppe in Inner Mongolia, offering invaluable insights for effective restoration strategies and climate change mitigation.

3.
Front Oncol ; 14: 1342996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947894

RESUMO

Background: Systemic immune-inflammation index (SII), a novel prognostic indicator, is being more commonly utilized in different types of cancer. This research project involved combining information from previously published studies to examine how pre-treatment SII can predict outcomes in individuals with upper tract urothelial carcinoma (UTUC). Further examination of the correlation between SII and clinical and pathological features in UTUC. Methods: We thoroughly chose pertinent articles from various databases including PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), WanFang database, and Chinese Scientific Journal Database (VIP) until March 10, 2022.The data collected was analyzed using Stata 17.0 software (Stat Corp, College Station, TX). Subsequently, the impact of SII on the survival outcomes of UTUC patients was evaluated by combining HRs with 95% confidence intervals. Results: Six included studies were finally confirmed, including 3911 UTUC patients in seven cohorts. The results showed that high SII before treatment predicted poor overall survival (HR =1.87, 95%CI 1.20-2.92, p=0.005), cancer specific survival (HR=2.70, 95%CI 1.47-4.96, P=0.001), and recurrence-free survival (HR =1.52, 95%CI 1.12-2.07, P=0.007). And the elevated SII may be related to LVI (present vs. absent) (OR=0.83, 95% CI=0.71-0.97, p=0.018), pT stage (pT ≥3 vs. < 3) (OR=1.82, 95% CI=1.21-2.72, p=0.004), and pN stage (N+ vs. N0) (OR=3.27, 95% CI=1.60-6.71, p=0.001). Conclusion: A comprehensive analysis of all included articles in this study showed that higher pretreatment SII was related to poorer survival outcomes and adverse pathological features independently. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022316333.

4.
Front Aging Neurosci ; 16: 1399175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988329

RESUMO

Objective: To examine the dose-response relationship between specific types of exercise for alleviating Timed up and Go (TUG) in Parkinson's disease PD. Design: Systematic review and Bayesian network meta-analysis. Data sources: PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web of Science were searched from inception until February 5th, 2024. Study analysis: Data analysis was conducted using R software with the MBNMA package. Effect sizes of outcome indicators were expressed as mean deviation (MD) and 95% confidence intervals (95% CrI). The risk of bias in the network was evaluated independently by two reviewers using ROB2. Results: A total of 73 studies involving 3,354 PD patients. The text discusses dose-response relationships in improving TUG performance among PD patients across various exercise types. Notably, Aquatic (AQE), Mix Exercise (Mul_C), Sensory Exercise (SE), and Resistance Training (RT) demonstrate effective dose ranges, with AQE optimal at 1500 METs-min/week (MD: -8.359, 95% CI: -1.398 to -2.648), Mul_C at 1000 METs-min/week (MD: -4.551, 95% CI: -8.083 to -0.946), SE at 1200 METs-min/week (MD: -5.145, 95% CI: -9.643 to -0.472), and RT at 610 METs-min/week (MD: -2.187, 95% CI: -3.161 to -1.278), respectively. However, no effective doses are found for Aerobic Exercise (AE), Balance Gait Training (BGT), Dance, and Treadmill Training (TT). Mind-body exercise (MBE) shows promise with an effective range of 130 to 750 METs-min/week and an optimal dose of 750 METs-min/week (MD: -2.822, 95% CI: -4.604 to -0.996). According to the GRADE system, the included studies' overall quality of the evidence was identified moderate level. Conclusion: This study identifies specific exercise modalities and dosages that significantly enhance TUG performance in PD patients. AQE emerges as the most effective modality, with an optimal dosage of 1,500 METs-min/week. MBE shows significant benefits at lower dosages, catering to patients with varying exercise capacities. RT exhibits a nuanced "U-shaped" dose-response relationship, suggesting an optimal range balancing efficacy and the risk of overtraining. These findings advocate for tailored exercise programs in PD management, emphasizing personalized prescriptions to maximize outcomes.Systematic Review Registration: International Prospective Register of Systematic Reviews (PROSPERO) (CRD42024506968).

5.
Oncol Lett ; 28(3): 413, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38988449

RESUMO

T cells play an important role in adaptive immunity. Mature T cells specifically recognize antigens on major histocompatibility complex molecules through T-cell receptors (TCRs). As the TCR repertoire is highly diverse, its analysis is vital in the assessment of T cells. Advances in sequencing technology have provided convenient methods for further investigation of the TCR repertoire. In the present review, the TCR structure and the mechanisms by which TCRs function in tumor recognition are described. In addition, the potential value of the TCR repertoire in tumor diagnosis is reviewed. Furthermore, the role of the TCR repertoire in tumor immunotherapy is introduced, and the relationships between the TCR repertoire and the effects of different tumor immunotherapies are discussed. Based on the reviewed literature, it may be concluded that the TCR repertoire has the potential to serve as a biomarker for tumor prognosis. However, a wider range of cancer types and more diverse subjects require evaluation in future research to establish the TCR repertoire as a biomarker of tumor immunity.

6.
Cell Host Microbe ; 32(7): 1114-1128.e10, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38955187

RESUMO

Plant immune homeostasis is achieved through a balanced immune activation and suppression, enabling effective defense while averting autoimmunity. In Arabidopsis, disrupting a mitogen-activated protein (MAP) kinase cascade triggers nucleotide-binding leucine-rich-repeat (NLR) SUPPRESSOR OF mkk1/2 2 (SUMM2)-mediated autoimmunity. Through an RNAi screen, we identify PUB5, a putative plant U-box E3 ligase, as a critical regulator of SUMM2-mediated autoimmunity. In contrast to typical E3 ligases, PUB5 stabilizes CRCK3, a calmodulin-binding receptor-like cytoplasmic kinase involved in SUMM2 activation. A closely related E3 ligase, PUB44, functions oppositely with PUB5 to degrade CRCK3 through monoubiquitylation and internalization. Furthermore, CRCK3, highly expressed in roots and conserved across plant species, confers resistance to Fusarium oxysporum, a devastating soil-borne fungal pathogen, in both Arabidopsis and cotton. These findings demonstrate the antagonistic role of an E3 ligase pair in fine-tuning kinase proteostasis for the regulation of NLR-mediated autoimmunity and highlight the function of autoimmune activators in governing plant root immunity against fungal pathogens.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Autoimunidade , Resistência à Doença , Fusarium , Doenças das Plantas , Imunidade Vegetal , Ubiquitina-Proteína Ligases , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Fusarium/imunologia , Proteínas NLR/metabolismo , Proteínas NLR/genética , Regulação da Expressão Gênica de Plantas , Ubiquitinação , Proteínas de Transporte
7.
PeerJ ; 12: e17664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974415

RESUMO

Objective: To study the mechanism by which conditioned medium of bone marrow mesenchymal stem cells (BMSCs-CM) facilitates the transition of pro-inflammatory polarized microglia to an anti-inflammatory phenotype. Methods: BV2 cells, a mouse microglia cell line, were transformed into a pro-inflammatory phenotype using lipopolysaccharide. The expression of phenotypic genes in BV2 cells was detected using real-time quantitative PCR (RT-qPCR). Enzyme-linked immunosorbent assay was used to measure inflammatory cytokine levels in BV2 cells co-cultured with BMSCs-CM. The expressions of mitophagy-associated proteins were determined using western blot. The mitochondrial membrane potential and ATP levels in BV2 cells were measured using JC-1 staining and an ATP assay kit, respectively. Additionally, we examined the proliferation, apoptosis, and migration of C8-D1A cells, a mouse astrocyte cell line, co-cultured with BV2 cells. Results: After co- culture with BMSCs -CM, the mRNA expression of tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase significantly decreased in pro-inflammatory BV2 cells, whereas the expression of CD206 and arginase-1 significantly increased. Moreover, TNF-α and interleukin-6 levels significantly decreased, whereas transforming growth factor-ß and interleukin-10 levels significantly increased. Furthermore, co-culture with BMSCs-CM increased mitophagy-associated protein expression, ATP levels, mitochondrial and lysosomal co-localization in these cells and decreased reactive oxygen species levels. Importantly, BMSCs-CM reversed the decrease in the proliferation and migration of C8-D1A cells co-cultured with pro-inflammatory BV2 cells and inhibited the apoptosis of C8-D1A cells. Conclusion: BMSCs-CM may promote the transition of polarized microglia from a pro-inflammatory to an anti-inflammatory phenotype by regulating mitophagy and influences the functional state of astrocytes.


Assuntos
Autofagia , Técnicas de Cocultura , Células-Tronco Mesenquimais , Microglia , Mitocôndrias , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Microglia/metabolismo , Camundongos , Meios de Cultivo Condicionados/farmacologia , Mitocôndrias/metabolismo , Fenótipo , Linhagem Celular , Mitofagia , Proliferação de Células , Citocinas/metabolismo , Apoptose , Lipopolissacarídeos/farmacologia
9.
Mol Pharm ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953708

RESUMO

The coronavirus (COVID-19) pandemic has underscored the critical role of mRNA-based vaccines as powerful, adaptable, readily manufacturable, and safe methodologies for prophylaxis. mRNA-based treatments are emerging as a hopeful avenue for a plethora of conditions, encompassing infectious diseases, cancer, autoimmune diseases, genetic diseases, and rare disorders. Nonetheless, the in vivo delivery of mRNA faces challenges due to its instability, suboptimal delivery, and potential for triggering undesired immune reactions. In this context, the development of effective drug delivery systems, particularly nanoparticles (NPs), is paramount. Tailored with biophysical and chemical properties and susceptible to surface customization, these NPs have demonstrated enhanced mRNA delivery in vivo and led to the approval of several NPs-based formulations for clinical use. Despite these advancements, the necessity for developing a refined, targeted NP delivery system remains imperative. This review comprehensively surveys the biological, translational, and clinical progress in NPs-mediated mRNA therapeutics for both the prevention and treatment of diverse diseases. By addressing critical factors for enhancing existing methodologies, it aims to inform the future development of precise and efficacious mRNA-based therapeutic interventions.

10.
Brain Topogr ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955901

RESUMO

Methamphetamine (MA) is a neurological drug, which is harmful to the overall brain cognitive function when abused. Based on this property of MA, people can be divided into those with MA abuse and healthy people. However, few studies to date have investigated automatic detection of MA abusers based on the neural activity. For this reason, the purpose of this research was to investigate the difference in the neural activity between MA abusers and healthy persons and accordingly discriminate MA abusers. First, we performed event-related potential (ERP) analysis to determine the time range of P300. Then, the wavelet coefficients of the P300 component were extracted as the main features, along with the time and frequency domain features within the selected P300 range to classify. To optimize the feature set, F_score was used to remove features below the average score. Finally, a Bidirectional Long Short-term Memory (BiLSTM) network was performed for classification. The experimental result showed that the detection accuracy of BiLSTM could reach 83.85%. In conclusion, the P300 component of EEG signals of MA abusers is different from that in normal persons. Based on this difference, this study proposes a novel way for the prevention and diagnosis of MA abuse.

11.
Epilepsy Res ; 205: 107397, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38976953

RESUMO

BACKGROUND: Epilepsy is a serious complication after an ischemic stroke. Although two studies have developed prediction model for post-stroke epilepsy (PSE), their accuracy remains insufficient, and their applicability to different populations is uncertain. With the rapid advancement of computer technology, machine learning (ML) offers new opportunities for creating more accurate prediction models. However, the potential of ML in predicting PSE is still not well understood. The purpose of this study was to develop prediction models for PSE among ischemic stroke patients. METHODS: Patients with ischemic stroke from two stroke centers were included in this retrospective cohort study. At the baseline level, 33 input variables were considered candidate features. The 2-year PSE prediction models in the derivation cohort were built using six ML algorithms. The predictive performance of these machine learning models required further appraisal and comparison with the reference model using the conventional triage classification information. The Shapley additive explanation (SHAP), based on fair profit allocation among many stakeholders according to their contributions, is used to interpret the predicted outcomes of the naive Bayes (NB) model. RESULTS: A total of 1977 patients were included to build the predictive model for PSE. The Boruta method identified NIHSS score, hospital length of stay, D-dimer level, and cortical involvement as the optimal features, with the receiver operating characteristic curves ranging from 0.709 to 0.849. An additional 870 patients were used to validate the ML and reference models. The NB model achieved the best performance among the PSE prediction models with an area under the receiver operating curve of 0.757. At the 20 % absolute risk threshold, the NB model also provided a sensitivity of 0.739 and a specificity of 0.720. The reference model had poor sensitivities of only 0.15 despite achieving a helpful AUC of 0.732. Furthermore, the SHAP method analysis demonstrated that a higher NIHSS score, longer hospital length of stay, higher D-dimer level, and cortical involvement were positive predictors of epilepsy after ischemic stroke. CONCLUSIONS: Our study confirmed the feasibility of applying the ML method to use easy-to-obtain variables for accurate prediction of PSE and provided improved strategies and effective resource allocation for high-risk patients. In addition, the SHAP method could improve model transparency and make it easier for clinicians to grasp the prediction model's reliability.

12.
Mol Neurobiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977622

RESUMO

Patients with hemorrhagic stroke have high rates of morbidity and mortality, and drugs for prevention are very limited. Mendelian randomization (MR) analysis can increase the success rate of drug development by providing genetic evidence. Previous MR analyses only analyzed the role of individual drug target genes in hemorrhagic stroke; therefore, we used MR analysis to systematically explore the druggable genes for hemorrhagic stroke. We sequentially performed summary-data-based MR analysis and two-sample MR analysis to assess the associations of all genes within the database with intracranial aneurysm, intracerebral hemorrhage, and their subtypes. Validated genes were further analyzed by colocalization. Only genes that were positive in all three analyses and were druggable were considered desirable genes. We also explored the mediators of genes affecting hemorrhagic stroke incidence. Finally, the associations of druggable genes with other cardiovascular diseases were analyzed to assess potential side effects. We identified 56 genes that significantly affected hemorrhagic stroke incidence. Moreover, TNFSF12, SLC22A4, SPARC, KL, RELT, and ADORA3 were found to be druggable. The inhibition of TNFSF12, SLC22A4, and SPARC can reduce the risk of intracranial aneurysm, subarachnoid hemorrhage, and intracerebral hemorrhage. Gene-induced hypertension may be a potential mechanism by which these genes cause hemorrhagic stroke. We also found that blocking these genes may cause side effects, such as ischemic stroke and its subtypes. Our study revealed that six druggable genes were associated with hemorrhagic stroke, and the inhibition of TNFSF12, SLC22A4, and SPARC had preventive effects against hemorrhagic strokes.

13.
Drug Des Devel Ther ; 18: 2555-2570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952487

RESUMO

Purpose: The aim of this review was to provide all the pharmacokinetic data for semaglutide in humans concerning its pharmacokinetics after subcutaneously and oral applications in healthy and diseased populations, to provide recommendations for clinical use. Methodology: The PubMed and Embase databases were searched to screen studies associated with the pharmacokinetics of semaglutide. The pharmacokinetic parameters included area under the curve plasma concentrations (AUC), maximal plasma concentration (Cmax), time to Cmax, half-life (t1/2), and clearance. The systematic literature search retrieved 17 articles including data on pharmacokinetic profiles after subcutaneously and oral applications of semaglutide, and at least one of the above pharmacokinetic parameter was reported in all included studies. Results: Semaglutide has a predictable pharmacokinetic profile with a long t1/2 that allows for once-weekly subcutaneous administration. The AUC and Cmax of both oral and subcutaneous semaglutide increased with dose. Food and various dosing conditions including water volume and dosing schedules can affect the oral semaglutide exposure. There are limited drug-drug interactions and no dosing adjustments in patients with upper gastrointestinal disease, renal impairment or hepatic impairment. Body weight may affect semaglutide exposure, but further studies are needed to confirm this. Conclusion: This review encompasses all the pharmacokinetic data for subcutaneous and oral semaglutide in both healthy and diseased participants. The existing pharmacokinetic data can assist in developing and evaluating pharmacokinetic models of semaglutide and will help clinicians predict semaglutide dosages. In addition, it can also help optimize future clinical trials.


Assuntos
Peptídeos Semelhantes ao Glucagon , Peptídeos Semelhantes ao Glucagon/farmacocinética , Peptídeos Semelhantes ao Glucagon/administração & dosagem , Humanos , Administração Oral , Injeções Subcutâneas , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/administração & dosagem , Interações Medicamentosas
14.
Artigo em Inglês | MEDLINE | ID: mdl-38963787

RESUMO

Background: Breast cancer is a leading cause of cancer-related deaths in women worldwide, posing a significant threat to female health. Therefore, it is crucial to search for new therapeutic targets and prognostic biomarkers for breast cancer patients. Method: Bioinformatics analysis, quantitative real-time PCR (qRT-PCR), and fluorescence in situ hybridization (FISH) were employed to investigate the expression of hsa_circ_002144 in breast cancer. Transwell assay, Western blotting, and cell viability assay were utilized to assess the impact of hsa_circ_002144 on the proliferation, migration, and invasion of breast cancer cells. Additionally, a mouse model was established to validate its functionality. Flow cytometry, WB analysis, enzyme-linked immunosorbent assay (ELISA), qRT-PCR, exosomes isolation, and co-culture system were employed to elucidate the molecular mechanism underlying macrophage polarization. Result: we have discovered for the first time that hsa_circ_002144 is highly expressed in breast cancer. It affected tumor growth and metastasis and could influence macrophage polarization through the glycolytic pathway. Conclusion: This finding provides a new direction for breast cancer treatment and prognosis assessment.

15.
Microbiol Res ; 286: 127826, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964074

RESUMO

Humic acids (HAs) are organic macromolecules that play an important role in improving soil properties, plant growth and agronomic parameters. However, the feature of relatively complex aromatic structure makes it difficult to be degraded, which restricts the promotion to the crop growth. Thus, exploring microorganisms capable of degrading HAs may be a potential solution. Here, a HAs-degrading strain, Streptomyces rochei L1, and its potential for biodegradation was studied by genomics, transcriptomics, and targeted metabolomics analytical approaches. The results showed that the high molecular weight HAs were cleaved to low molecular aliphatic and aromatic compounds and their derivatives. This cleavage may be associated with the laccase (KatE). In addition, the polysaccharide deacetylase (PdgA) catalyzes the removal of acetyl groups from specific sites on the HAs molecule, resulting in structural changes. The field experiment showed that the degraded HAs significantly promote the growth of corn seedlings and increase the corn yield by 3.6 %. The HAs-degrading products, including aromatic and low molecular weight aliphatic substances as well as secondary metabolites from S. rochei L1, might be the key components responsible for the corn promotion. Our findings will advance the application of HAs as soil nutrients for the green and sustainable agriculture.

16.
Mol Cell Biochem ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965127

RESUMO

Oxidative stress (OS) and inflammation play essential roles in the development of diabetic nephropathy (DN). Tirzepatide (TZP) has a protective effect in diabetes. However, its underlying mechanism in DN remains unclear. DN model mice were induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg), followed by administration of different doses of TZP (3 and 10 nmol/kg) via intraperitoneal injection for 8 weeks. The effects of TZP on DN were evaluated by detecting DN-related biochemical indicators, kidney histopathology, apoptosis, OS, and inflammation levels. Additionally, to further reveal the potential mechanism, we investigated the role of TZP in modulating the IL-17 pathway. TZP reduced serum creatinine (sCR), blood urea nitrogen (BUN), and advanced glycosylation end products (AGEs) levels, while simultaneously promoting insulin secretion in diabetic mice. Additionally, TZP attenuated tubular and glomerular injury and reduced renal apoptosis levels. Further studies found that TZP increased the levels of SOD and CAT, and decreased MDA. Meanwhile, TZP also reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in both mouse serum and kidney homogenates. TZP effectively inhibited the IL-17 pathway, and subsequent intervention with an IL-17 pathway agonist (IL-17A) reversed the suppressive effects of TZP on OS and inflammation. TZP can improve DN by inhibiting OS and inflammation through the suppression of the IL-17 pathway.

17.
FASEB J ; 38(13): e23766, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38967214

RESUMO

Dysbiosis of gut microbiota may account for pathobiology in simple fatty liver (SFL), metabolic dysfunction-associated steatohepatitis (MASH), fibrotic progression, and transformation to MASH-associated hepatocellular carcinoma (MASH-HCC). The aim of the present study is to investigate gut dysbiosis in this progression. Fecal microbial rRNA-16S sequencing, absolute quantification, histopathologic, and biochemical tests were performed in mice fed high fat/calorie diet plus high fructose and glucose in drinking water (HFCD-HF/G) or control diet (CD) for 2, 16 weeks, or 14 months. Histopathologic examination verified an early stage of SFL, MASH, fibrotic, or MASH-HCC progression with disturbance of lipid metabolism, liver injury, and impaired gut mucosal barrier as indicated by loss of occludin in ileum mucosa. Gut dysbiosis occurred as early as 2 weeks with reduced α diversity, expansion of Kineothrix, Lactococcus, Akkermansia; and shrinkage in Bifidobacterium, Lactobacillus, etc., at a genus level. Dysbiosis was found as early as MAHS initiation, and was much more profound through the MASH-fibrotic and oncogenic progression. Moreover, the expansion of specific species, such as Lactobacillus johnsonii and Kineothrix alysoides, was confirmed by an optimized method for absolute quantification. Dynamic alterations of gut microbiota were characterized in three stages of early SFL, MASH, and its HCC transformation. The findings suggest that the extent of dysbiosis was accompanied with MASH progression and its transformation to HCC, and the shrinking or emerging of specific microbial species may account at least in part for pathologic, metabolic, and immunologic alterations in fibrogenic progression and malignant transition in the liver.


Assuntos
Carcinoma Hepatocelular , Disbiose , Microbioma Gastrointestinal , Neoplasias Hepáticas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/microbiologia , Neoplasias Hepáticas/etiologia , Disbiose/microbiologia , Masculino , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fígado Gorduroso/microbiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38968045

RESUMO

BACKGROUND: The precise association between lncRNA H19 and ferroptosis in the context of atherosclerosis remains uncertain. OBJECTIVE: This study is to clarify the underlying process and propose novel approaches for the advancement of therapeutic interventions targeting atherosclerosis. METHODS: Assessment of ferroptosis, which entails the evaluation of cell viability using CCK-8 and the quantification of intracellular MDA, GSH, and ferrous ions. Simultaneously, the protein expression levels of assessed by western blot analysis, while the expression level of lncRNA H19 was also determined. Furthermore, HAECs that were cultured with ox-LDL were subjected to Fer-1 interference. HAECs were exposed to ox-LDL and then transfected with H19 shRNA and H19 overexpression vector pcDNA3.1. The level of ferroptosis in the cells was then measured. Then, HAECs were subjected to incubation with ox-LDL, followed by transfection with H19 shRNA and treated with Erastin to assess the levels of ferroptosis, cell viability, and inflammatory factor production. and the ability for blood vessel development. RESULTS: The survival rate of HAECs in the ox-LDL group was much lower. Ox-LDL resulted in an upregulation of ACSL4 expression in HAECs, while the expression of SLC7A11 and GPX4 decreased. CONCLUSIONS: lncRNA H19 enhances ferroptosis and exacerbates arterial endothelial cell damage induced by LDL.

19.
Transl Pediatr ; 13(6): 987-993, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38984022

RESUMO

Background: Acral persistent papular mucinosis (APPM) is a rare idiopathic subtype of localized lichen myxedematosus. To date, there have been less than 41 APPM cases reported worldwide, however, almost all patients were older than 18 years of age. A 7-year-old child was first reported in this paper. Case Description: A 7-year-old boy was admitted to our hospital with a solitary skin-colored papule on the radial side of the middle segment of his right index finger. The patient wanted to know the exact diagnosis and remove it because the flexion movement of the middle segment had been affected. Thus, a surgery was performed. Histopathological examination of a biopsy specimen obtained from the papule on the radial side of the middle segment of his right index finger showed a focal and well-circumscribed deposit of mucin in the papillary and middermis. The deposit never extended deeply into the reticular dermis. Mucin spared a subepidermal area in the papillary dermis. Alcian blue stains can highlight the mucin. The papule was histologically diagnosed as an APPM and excised surgically. The wound gradually healed after the operation, and no obvious recurrence, scar or other discomfort was observed during follow-up so far. Conclusions: To the best of our knowledge, this is the rare case of a child APPM presenting as a solitary papule affecting the flexion movement of the middle segment. Since it is a rare disease, we report this case to contribute to future research on the diagnosis and pathogenesis of APPM.

20.
Front Microbiol ; 15: 1394332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946904

RESUMO

Introduction: As a symbiotic probiotic for the host, Clostridium butyricum (CB) has the potential to strengthen the body's immune system and improve intestinal health. However, the probiotic mechanism of CB is not completely understood. The Clostridium butyricum CBX 2021 strain isolated by our team from a health pig independently exhibits strong butyric acid production ability and stress resistance. Therefore, this study comprehensively investigated the efficacy of CBX 2021 in pigs and its mechanism of improving pig health. Methods: In this study, we systematically revealed the probiotic effect and potential mechanism of the strain by using various methods such as microbiome, metabolites and transcriptome through animal experiments in vivo and cell experiments in vitro. Results: Our in vivo study showed that CBX 2021 improved growth indicators such as daily weight gain in weaned piglets and also reduced diarrhea rates. Meanwhile, CBX 2021 significantly increased immunoglobulin levels in piglets, reduced contents of inflammatory factors and improved the intestinal barrier. Subsequently, 16S rRNA sequencing showed that CBX 2021 treatment implanted more butyric acid-producing bacteria (such as Faecalibacterium) in piglets and reduced the number of potentially pathogenic bacteria (like Rikenellaceae RC9_gut_group). With significant changes in the microbial community, CBX 2021 improved tryptophan metabolism and several alkaloids synthesis in piglets. Further in vitro experiments showed that CBX 2021 adhesion directly promoted the proliferation of a porcine intestinal epithelial cell line (IPEC-J2). Moreover, transcriptome analysis revealed that bacterial adhesion increased the expression of intracellular G protein-coupled receptors, inhibited the Notch signaling pathway, and led to a decrease in intracellular pro-inflammatory molecules. Discussion: These results suggest that CBX 2021 may accelerate piglet growth by optimizing the intestinal microbiota, improving metabolic function and enhancing intestinal health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...