Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542441

RESUMO

One of the major challenges in multiple sclerosis (MS) is to accurately monitor and quantify disability over time. Thus, there is a pressing need to identify new biomarkers for disease progression. Peripheral blood DNA methylation has been demonstrated to be an easily accessible and quantifiable marker in many neurodegenerative diseases. In this study, we aimed to investigate whether methylation patterns that were previously determined in chronic inactive white matter lesions of patients with progressive MS are also reflected in the blood, and whether the latter can serve as a biomarker for disease progression in MS. While our initial analysis revealed differences in the blood methylation state of important myelin-related genes between patients with progressive MS and controls, these findings could not be validated in other independent patient cohorts. Subsequent investigation suggests that sample storage can selectively influence DNA methylation patterns, potentially hindering accurate epigenetic analysis. Therefore, sample storage time should be taken into consideration during the initial sample selection stage in biomarker studies.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Metilação de DNA , Biomarcadores , Progressão da Doença
2.
Acta Neuropathol Commun ; 12(1): 24, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331815

RESUMO

Myelin sheath abnormality is the cause of various neurodegenerative diseases (NDDs). G-proteins and their coupled receptors (GPCRs) play the important roles in myelination. Gnao1, encoding the major Gα protein (Gαo) in mammalian nerve system, is required for normal motor function. Here, we show that Gnao1 restricted to Schwann cell (SCs) lineage, but not neurons, negatively regulate SC differentiation, myelination, as well as re-myelination in peripheral nervous system (PNS). Mice lacking Gnao1 expression in SCs exhibit faster re-myelination and motor function recovery after nerve injury. Conversely, mice with Gnao1 overexpression in SCs display the insufficient myelinating capacity and delayed re-myelination. In vitro, Gnao1 deletion in SCs promotes SC differentiation. We found that Gnao1 knockdown in SCs resulting in the elevation of cAMP content and the activation of PI3K/AKT pathway, both associated with SC differentiation. The analysis of RNA sequencing data further evidenced that Gnao1 deletion cause the increased expression of myelin-related molecules and activation of regulatory pathways. Taken together, our data indicate that Gnao1 negatively regulated SC differentiation by reducing cAMP level and inhibiting PI3K-AKT cascade activation, identifying a novel drug target for the treatment of demyelinating diseases.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas de Ligação ao GTP , Mamíferos/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann
3.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555425

RESUMO

Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.


Assuntos
Carboxiliases , Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Medula Espinal/metabolismo , Recuperação de Função Fisiológica , Diferenciação Celular/fisiologia
4.
Ann Transl Med ; 10(16): 875, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36110998

RESUMO

Background: Axonal myelination is critical for the functioning of vertebrate nervous system. Myelin sheath malformation or degeneration can cause a variety of neurological diseases. Our previous study identified multiple potential myelination-related transcriptional factors (TFs), including expressed sequence tag (ETS) variant transcription factor 1 (Etv1)/Er81, via gene microarray analysis of Schwann cells (SCs) at various myelination stages. Etv1 is known to be involved in the regulation of neuronal specialization, muscle spindle differentiation, and sensorimotor connectivity. However, to our knowledge, to date, there are no relevant studies that Etv1 regulates SC myelination. Methods: To investigate the roles of Etv1 in SC re-myelination, an in vivo mouse myelination model was used, in which the sciatic nerve is crushed. Etv1 in nerves was knocked down via in situ injection of cholesterol-modified Etv1-small interfering (si)RNA. The expression of myelin-associated glycoprotein (MAG) was evaluated by Western blotting (WB) and immunohistochemistry (IHC). Myelination was assessed by transmission electron microscopy (TEM). The effects of Etv1 on SC proliferation, migration, and differentiation were assessed in vitro using the EdU cell proliferation kit, a culture-insert scratch assay, a SC aggregate sphere migration assay on the axons of dorsal root ganglions (DRGs), and a SC differentiation model. Chromatin immunoprecipitation (ChIP) united with quantitative real-time PCR (qPCR), known as ChIP-qPCR, and luciferase activity reporter assays were performed to explore the possible mechanisms by which Etv1 controls SC differentiation and myelination. Results: The results demonstrated that Etv1 promoted myelination by facilitating SC proliferation, migration, and differentiation. Etv1 expression in SCs was upregulated during re-myelination, and knocking down Etv1 expression dramatically abrogated SC re-myelination in the crushed sciatic nerves. Moreover, silencing of Etv1 by siRNA in SCs in vitro inhibited its migration, proliferation, and differentiation. The results of ChIP-qPCR and luciferase reporter assay showed that Etv1 may regulate SC differentiation and myelination by binding to the promoters of myelination-related genes, such as MAG and Runx2, to initiate their transcription. Conclusions: Taken together, these findings demonstrated a previously unknown role of Etv1 in SC differentiation and myelination, providing a candidate molecular target for clinical interventions in demyelinating diseases.

5.
Neurosci Bull ; 38(7): 720-740, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35397705

RESUMO

Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.


Assuntos
Cromatina , Células de Schwann , Animais , Axônios , Cromatina/metabolismo , Perfilação da Expressão Gênica , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Ratos , Células de Schwann/metabolismo , Nervo Isquiático/lesões
6.
Brain Commun ; 4(1): fcac025, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35224490

RESUMO

The p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in Drosophila and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated. Here, we tested the hypothesis that p70 ribosomal S6 kinase 1 regulates oligodendrocyte differentiation during developmental myelination and remyelination processes in the CNS. We demonstrate that p70 ribosomal S6 kinase activity peaks in oligodendrocyte lineage cells at the time when they transition to myelinating oligodendrocytes during developmental myelination in the mouse spinal cord. We further show p70 ribosomal S6 kinase activity in differentiating oligodendrocytes in acute demyelinating lesions induced by lysophosphatidylcholine injection or by experimental autoimmune encephalomyelitis in mice. In demyelinated lesions, the expression of the p70 ribosomal S6 kinase target, phosphorylated S6 ribosomal protein, was transient and highest in maturing oligodendrocytes. Interestingly, we also identified p70 ribosomal S6 kinase activity in oligodendrocyte lineage cells in active multiple sclerosis lesions. Consistent with its predicted function in promoting oligodendrocyte differentiation, we demonstrate that specifically inhibiting p70 ribosomal S6 kinase 1 in cultured oligodendrocyte precursor cells significantly impairs cell lineage progression and expression of myelin basic protein. Finally, we used zebrafish to show in vivo that inhibiting p70 ribosomal S6 kinase 1 function in oligodendroglial cells reduces their differentiation and the number of myelin internodes produced. These data reveal an essential function of p70 ribosomal S6 kinase 1 in promoting oligodendrocyte differentiation during development and remyelination across multiple species.

7.
Neurosci Lett ; 766: 136287, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634393

RESUMO

Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.


Assuntos
Corpo Caloso , Doenças Desmielinizantes/metabolismo , Pré-Albumina/deficiência , Remielinização/fisiologia , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Neuroscience Bulletin ; (6): 720-740, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-939842

RESUMO

Enhancing remyelination after injury is of utmost importance for optimizing the recovery of nerve function. While the formation of myelin by Schwann cells (SCs) is critical for the function of the peripheral nervous system, the temporal dynamics and regulatory mechanisms that control the progress of the SC lineage through myelination require further elucidation. Here, using in vitro co-culture models, gene expression profiling of laser capture-microdissected SCs at various stages of myelination, and multilevel bioinformatic analysis, we demonstrated that SCs exhibit three distinct transcriptional characteristics during myelination: the immature, promyelinating, and myelinating states. We showed that suppressor interacting 3a (Sin3A) and 16 other transcription factors and chromatin regulators play important roles in the progress of myelination. Sin3A knockdown in the sciatic nerve or specifically in SCs reduced or delayed the myelination of regenerating axons in a rat crushed sciatic nerve model, while overexpression of Sin3A greatly promoted the remyelination of axons. Further, in vitro experiments revealed that Sin3A silencing inhibited SC migration and differentiation at the promyelination stage and promoted SC proliferation at the immature stage. In addition, SC differentiation and maturation may be regulated by the Sin3A/histone deacetylase2 (HDAC2) complex functionally cooperating with Sox10, as demonstrated by rescue assays. Together, these results complement the recent genome and proteome analyses of SCs during peripheral nerve myelin formation. The results also reveal a key role of Sin3A-dependent chromatin organization in promoting myelinogenic programs and SC differentiation to control peripheral myelination and repair. These findings may inform new treatments for enhancing remyelination and nerve regeneration.


Assuntos
Animais , Ratos , Axônios , Cromatina/metabolismo , Perfilação da Expressão Gênica , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Células de Schwann/metabolismo , Nervo Isquiático/lesões
9.
Neurosci Lett ; 750: 135764, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33621639

RESUMO

Alzheimer's disease (AD) is the main cause of dementia in the world. Studies of human AD brains show abnormalities in the white matter and reduction of myelin and oligodendrocyte markers. It has been proposed that oligodendrocyte progenitor cells (OPCs) present in the adult brain are a potential source for re-myelination, through proliferation and differentiation into mature oligodendrocytes. Bexarotene, a Retinoid X Receptor agonist, has been demonstrated to reverse behavioral deficits and to improved synaptic transmission and plasticity in murine models of AD, which was associated with the reduction of soluble Aß peptides. In the present study, we analyzed changes in the expression of oligodendrocyte lineage markers following oral administration of Bexarotene in a very old (24-month-old) triple transgenic mouse model of AD (3xTg-AD), for which early demyelination changes have been previously described. Bexarotene increased the expression of OPCs and intermediate oligodendrocyte progenitors (Olig2+ and O4+), and increased the number of mitotic (O4+) and myelinating mature (MBP+) oligodendrocytes. We clearly show that Bexarotene promotes re-myelination which might be important for the previously observed cognitive improvement of 3xTg-AD mice treated with this drug.


Assuntos
Doença de Alzheimer/metabolismo , Bexaroteno/farmacologia , Bainha de Mielina/metabolismo , Fármacos Neuroprotetores/farmacologia , Oligodendroglia/efeitos dos fármacos , Receptores X de Retinoides/agonistas , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proliferação de Células , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/metabolismo , Oligodendroglia/fisiologia , Presenilina-1/genética , Proteínas tau/genética
10.
Development ; 147(24)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33158923

RESUMO

Spinal cord injury (SCI) results in loss of neurons, oligodendrocytes and myelin sheaths, all of which are not efficiently restored. The scarcity of oligodendrocytes in the lesion site impairs re-myelination of spared fibres, which leaves axons denuded, impedes signal transduction and contributes to permanent functional deficits. In contrast to mammals, zebrafish can functionally regenerate the spinal cord. Yet, little is known about oligodendroglial lineage biology and re-myelination capacity after SCI in a regeneration-permissive context. Here, we report that, in adult zebrafish, SCI results in axonal, oligodendrocyte and myelin sheath loss. We find that OPCs, the oligodendrocyte progenitor cells, survive the injury, enter a reactive state, proliferate and differentiate into oligodendrocytes. Concomitantly, the oligodendrocyte population is re-established to pre-injury levels within 2 weeks. Transcriptional profiling revealed that reactive OPCs upregulate the expression of several myelination-related genes. Interestingly, global reduction of axonal tracts and partial re-myelination, relative to pre-injury levels, persist at later stages of regeneration, yet are sufficient for functional recovery. Taken together, these findings imply that, in the zebrafish spinal cord, OPCs replace lost oligodendrocytes and, thus, re-establish myelination during regeneration.


Assuntos
Células Precursoras de Oligodendrócitos/citologia , Remielinização/genética , Traumatismos da Medula Espinal/genética , Medula Espinal/crescimento & desenvolvimento , Animais , Modelos Animais de Doenças , Humanos , Células Precursoras de Oligodendrócitos/transplante , Oligodendroglia/transplante , Regeneração/genética , Medula Espinal/transplante , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
11.
Neural Regen Res ; 15(11): 1977-1980, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32394944

RESUMO

Fast and efficient transmission of electrical signals in the nervous system is mediated through myelinated nerve fibers. In neuronal diseases such as multiple sclerosis, the conduction properties of axons are disturbed by the removal of the myelin sheath, leaving nerve cells at a higher risk of degenerating. In some cases, the protective myelin sheath of axons can be rebuilt by remyelination through oligodendroglial cells. In any case, however, changes in the ion channel organization occur and may help to restore impulse conduction after demyelination. On the other hand, changes in ion channel distribution may increase the energy demand of axons, thereby increasing the probability of axonal degeneration. Many attempts have been made or discussed in recent years to increase remyelination of affected axons in demyelinating diseases such as multiple sclerosis. These approaches range from pharmacological treatments that reduce inflammatory processes or block ion channels to the modulation of neuronal activity through electrical cortical stimulation. However, these treatments either affect the entire organism (pharmacological) or exert a very local effect (electrodes). Current results show that neuronal activity is a strong regulator of oligodendroglial development. To bridge the gap between global and very local treatments, non-invasive transcranial magnetic stimulation could be considered. Transcranial magnetic stimulation is externally applied to brain areas and experiments with repetitive transcranial magnetic stimulation show that the neuronal activity can be modulated depending on the stimulation parameters in both humans and animals. In this review, we discuss the possibilities of influencing ion channel distribution and increasing neuronal activity by transcranial magnetic stimulation as well as the effect of this modulation on oligodendroglial cells and their capacity to remyelinate previously demyelinated axons. Although the physiological mechanisms underlying the effects of transcranial magnetic stimulation clearly need further investigations, repetitive transcranial magnetic stimulation may be a promising approach for non-invasive neuronal modulation aiming at enhancing remyelination and thus reducing neurodegeneration.

12.
Arch Ital Biol ; 157(2-3): 76-88, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31821531

RESUMO

Ultrastructural evaluation of myelin coat helps to understand the possible background of pathological changes leading to deterioration or complete loss of nerve functions. A number of terms were previously introduced to describe the fine structural changes in myelin under various conditions. We believe that using a common terminology will be helpful to interpret the structure/function relationship in neurological disorders empowering the diagnosis and possible therapeutical approaches. In this paper, we present examples of ultrastructural changes in myelin during myelination, demyelination, re-myelination and dysmyelination processes and we reviewed the terminology previously used.We tried to include all studies reporting ultrastructural findings with no limitation to the experimental conditions, the species used and the disorders. The terminology used to describe the structural findings included compacted myelin, partially compacted myelin, noncompacted myelin, redundancy (hypermyelination, tomacula, myelinosome), splitting, complete circular splitting, myelin degradation, concentric lamellar bodies (myelin figures), loss of myelin lamellae, polyaxonal Schwann cells and necrotic cell debris.Ultrastructural data described in this paper aimed to provide a guide for future studies. We concluded that the evaluation of ultrastructural changes in any neurological disorder is greatly valuable for a better understanding of pathological and physiological changes occured. We also believe that supporting the ultrastructural findings with quantitative methods in the future will be of great value.


Assuntos
Bainha de Mielina , Células de Schwann , Terminologia como Assunto
13.
F1000Res ; 8: 117, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069065

RESUMO

The normal development and maintenance of CNS white matter, and its responses to disease and injury, are defined by synergies between axons, oligodendrocytes, astrocytes and microglia, and further influenced by peripheral components such as the gut microbiome and the endocrine and immune systems. Consequently, mechanistic insights, therapeutic approaches and safety tests rely ultimately on in vivo models and clinical trials. However, in vitro models that replicate the cellular complexity of the CNS can inform these approaches, reducing costs and minimising the use of human material or experimental animals; in line with the principles of the 3Rs. Using electrophysiology, pharmacology, time-lapse imaging, and immunological assays, we demonstrate that murine spinal cord-derived myelinating cell cultures recapitulate spinal-like electrical activity and innate CNS immune functions, including responses to disease-relevant myelin debris and pathogen associated molecular patterns (PAMPs).  Further, we show they are (i) amenable to siRNA making them suitable for testing gene-silencing strategies; (ii) can be established on microelectrode arrays (MEAs) for electrophysiological studies; and (iii) are compatible with multi-well microplate formats for semi-high throughput screens, maximising information output whilst further reducing animal use. We provide protocols for each of these. Together, these advances increase the utility of this in vitro tool for studying normal and pathological development and function of white matter, and for screening therapeutic molecules or gene targets for diseases such as multiple sclerosis, motor neuron disease or spinal cord injury, whilst avoiding in vivo approaches on experimental animals.


Assuntos
Modelos Biológicos , Esclerose Múltipla , Traumatismos da Medula Espinal , Substância Branca , Animais , Axônios , Humanos , Camundongos , Bainha de Mielina
14.
Front Neurol ; 10: 1297, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920921

RESUMO

The purpose of this study was to examine the potential effect modifying role of the BDNF Val66Met polymorphism on the association of soccer heading with white matter microstructure. We studied 312 players enrolled in the ongoing Einstein Soccer Study, a longitudinal study of amateur soccer player in New York City and surrounding areas. At enrollment and 2 years later, total heading in the prior 12 months (12-mo.) was estimated using an established self-report instrument and diffusion tensor imaging (DTI) was performed. Generalized Estimating Equations (GEE) logistic regression models were employed to test effect modification by the BDNF Val66Met polymorphism on the association between 12-mo. heading exposure and DTI. We identified a significant interaction of 12-mo heading*BDNF Val66Met genotype on the presence of low Radial Diffusivity, a DTI marker associated with myelination. Only Met (+) players demonstrated significantly reduced odds of low RD [OR (95 % CI): -2.36 (-3.53, -1.19)] associated with the highest vs. lowest quartile of 12-mo heading exposure. BDNF Val66Met (+) soccer players with long-term exposure to high levels of heading exhibit less low Radial Diffusivity, suggesting impaired re-myelination may be a substrate of the previously reported association between heading and poor functional outcomes in soccer players.

15.
Anat Rec (Hoboken) ; 301(10): 1690-1696, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30353694

RESUMO

Sutureless nerve repair has been regarded as a promising technique for nerve repair as the suture materials often results in neuroma formation and scar tissue that impede nerve regeneration. The aim of this study was to analyze the mechanical stability and morphological outcome of sutureless repair using fibrin glue conduit and an alternative approach of modified suture placement. Using rat sciatic nerve, we tested the following experimental conditions: conventional suture repair; single suture combined with fibrin glue repair, and fibrin conduit reinforced with modified suture or fibrin glue. Nerve detachment anatomical measures such as axon density, myelin, and fiber caliber were analyzed for evaluation of nerve regeneration. Muscle atrophy were evaluated by muscle wet weight and H&E staining. All animals in sutureless repair group exhibited complete detachment or elongation by two or four weeks after repair. No detachment was found in any other groups. Animals treated with fibrin conduit reinforced with modified suture showed better axonal regeneration with good alignment. There were no significant differences in axon caliber among the groups. Muscle atrophy was found in all groups and there was no significant difference in muscle wet-weight among the groups. In summary, sutureless nerve repair with fibrin glue was mechanically unstable for resistance of mechanical stretches, fibrin glue conduit with modified suture placement is mechanically stable and resulted in better morphological outcome. Anat Rec, 301:1690-1696, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Adesivo Tecidual de Fibrina/administração & dosagem , Traumatismos dos Nervos Periféricos/cirurgia , Neuropatia Ciática/cirurgia , Técnicas de Sutura , Adesivos Teciduais/administração & dosagem , Animais , Axônios , Feminino , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/complicações , Ratos Sprague-Dawley , Nervo Isquiático/citologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Neuropatia Ciática/complicações
16.
Neurol Res ; 40(3): 231-238, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29513163

RESUMO

Objective To investigate the effects of electrical stimulation (ES) on the nerve regeneration and functional recovery of facial expression muscles in facial nerve defect rats. Methods Sixty rats were surgically introduced with a 1-cm defect on the right facial nerves and evenly divided into the Surgery group (Group A, the main trunk of the right facial nerve was surgically cut-off with a 1.0 cm at the foramina stylomastoideum) and the Surgery + ES group (Group B). Twenty normal rats were as normal control group (without receiving surgery or ES). For rats in group B, the orbicularis oris muscle of the right paralyzed face was stimulated with an electrical pulse of 3 V, 20 Hz and 0.3 mA for 1 h each day. The effects of ES on the facial muscle movement, compound muscle action potentials (CMAPs), histological structure, and the expression levels of S100B and NF200 proteins were comparatively studied. Results In group A, facial paralysis scores were slightly improved from day 1 to 28; the facial nerve trunks had swelled and malformed till day 14; and CMAPs could be induced in fewer animals and were abnormal, resulting in a slow recovery of the facial muscle movement. In group B, facial paralysis scores were improved from 4 to 2.6 during the 4 weeks; more rats showed a higher amplitude and shorter latency of CMAPs from day 14 to 28 after surgery; and increased axons and the expression of S100B and NF200 proteins and gradually decreased swelling in the injured facial nerve. Conclusion ES promotes outgrowth and myelination of axons and a partial functional recovery of facial muscles in injured facial nerve rats.


Assuntos
Axônios/metabolismo , Estimulação Elétrica/métodos , Traumatismos do Nervo Facial/terapia , Regeneração Nervosa/fisiologia , Remielinização/fisiologia , Animais , Modelos Animais de Doenças , Eletromiografia , Potencial Evocado Motor/fisiologia , Contração Muscular/fisiologia , Condução Nervosa/fisiologia , Proteínas de Neurofilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo
17.
Adv Exp Med Biol ; 958: 91-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28093710

RESUMO

Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.


Assuntos
Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Degeneração Neural/patologia , Oligodendroglia/patologia , Animais , Humanos , Regeneração Nervosa/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
18.
Front Cell Neurosci ; 8: 328, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386118

RESUMO

Traumatic injury of the central nervous system (CNS) has severe impact on the patients' quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surrounding vascular architecture and initiation of an immune response. Class III semaphorins (SEMA3s) are present in the neural scar and influence a wide range of molecules and cell types in and surrounding the injured tissue. SEMA3s and their receptors, neuropilins (NRPs) and plexins (PLXNs) were initially studied because of their involvement in repulsive axon guidance. To date, SEMA3 signaling is recognized to be of crucial importance for re-vascularization, the immune response and remyelination. The purpose of this review is to summarize and discuss how SEMA3s modulate these processes that are all crucial components of the tissue response to injury. Most of the functions for SEMA3s are achieved through their binding partners NRPs, which are also co-receptors for a variety of other molecules implicated in the above processes. The most notable ligands are members of the vascular endothelial growth factor (VEGF) family and the transforming growth factor family. Therefore, a second aim is to highlight the overlapping or competing signaling pathways that are mediated through NRPs in the same processes. In conclusion, we show that the role of SEMA3s goes beyond inhibiting axonal regeneration, since they are also critical modulators of re-vascularization, the immune response and re-myelination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...