Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.239
Filtrar
1.
Mol Carcinog ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980215

RESUMO

γ-Tocotrienol (γ-T3) is a major subtype of vitamin E, mainly extracted from palm trees, barley, walnuts, and other plants. γ-T3 has effects on anti-inflammation, anti-oxidation, and potential chemoprevention against malignancies. It is still uncompleted to understand the effect of γ-T3 on the inhibitory mechanism of cancer. This study aimed to investigate whether γ-T3 enhanced autophagy in gastric cancer and the underlying molecular mechanism. The results showed that γ-T3 (0-90 µmol/L) inhibited the proliferation of gastric cancer MKN45 cells and AGS cells, and arrested the cell cycle at the G0/G1 phase in a dose-dependent manner. Autophagy was increased in MKN45 cells treated with γ-T3 (0-45 µmol/L), especially at a dose of 30 µmol/L for 24 h. These effects were reversed by 3-methyladenine pretreatment. Furthermore, γ-T3 (30 µmol/L) also significantly downregulated the expression of pGSK-3ß (ser9) and ß-catenin protein in MKN45 cells, and γ-T3 (20 mg/kg b.w.) effectively decreased the growth of MKN45 cell xenografts in BABL/c mice. GSK-3ß inhibitor-CHIR-99021 reversed the negative regulation of GSK-3ß/ß-Catenin signaling and autophagy. Our findings indicated that γ-T3 enhances autophagy in gastric cancer cells mediated by GSK-3ß/ß-Catenin signaling, which provides new insights into the role of γ-T3 enhancing autophagy in gastric cancer.

2.
J Cancer ; 15(14): 4490-4502, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006077

RESUMO

Ovarian cancer is one of the gynecological malignancies with the highest mortality rate. Its widespread metastasis is difficult to cure, and the beneficiaries of targeted therapy are still limited, which has been a long-standing bottleneck problem. MAGUK P55 scaffold protein 7 (MPP7) plays an important role in the establishment of epithelial cell polarity, but its potential significance in epithelial ovarian cancer is still unclear. In this study, we investigated the expression profile of MPP7 and its functional role in epithelial ovarian cancer. Through analysis of TCGA and GEO databases, combined with immunohistochemical staining of ovarian tumor tissue chips, it was found that MPP7 is significantly overexpressed in epithelial ovarian cancer tissue, and its high expression is closely related to poor prognosis of patients. It has been verified through cell function experiments that interference with MPP7 can inhibit the proliferation, migration, and invasion of ovarian cancer cells in vitro. Performing planar polarity immunofluorescence staining on ovarian cancer cells revealed that interference with MPP7 can cause polarity changes in ovarian cancer cells. The transcriptome sequencing results of the ovarian cancer database were analyzed, and Western Blot was used to verify that MPP7 may mediate EMT via Wnt/ß-catenin signaling pathway and promote changes in cell polarity in human epithelial ovarian cancer, thereby promoting cancer progression, demonstrating the potential of MPP7 as a new biomarker and target for the diagnosis and treatment of ovarian cancer.

3.
J Orthop Translat ; 47: 63-73, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007034

RESUMO

Background: The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/ß-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. Methods: We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords "Wnt*", "bone*" and "muscle*". A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results: Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/ß-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions: Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/ß-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article: The systematic review provides an extensive overview to reveal the roles of Wnt/ß-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.

4.
PeerJ ; 12: e17662, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993979

RESUMO

Background: miRNAs are small, conserved, single-stranded non-coding RNA that are typically transported by exosomes for their functional roles. The therapeutic potential of exosomal miRNAs has been explored in various diseases including breast cancer, pancreatic cancer, cholangiocarcinoma, skin diseases, Alzheimer's disease, stroke, and glioma. Pathophysiological processes such as cellular inflammation, apoptosis, necrosis, immune dysfunction, and oxidative stress are closely associated with miRNAs. Internal and external factors such as tissue ischemia, hypoxia, pathogen infection, and endotoxin exposure can trigger these reactions and are linked to miRNAs. Paraquat-induced fibrosis is a protracted process that may not manifest immediately after injury but develops during bodily recovery, providing insights into potential miRNA intervention treatments. Rationale: These findings could potentially be applied for further pharmaceutical research and clinical therapy of paraquat-induced pulmonary fibrosis, and are likely to be of great interest to clinicians involved in lung fibrosis research. Methodology: Through a literature review, we identified an association between miR-15a-5p and miR-152-3p and their involvement in the Wnt signaling pathway. This allowed us to deduce the molecular mechanisms underlying regulatory interactions involved in paraquat-induced lung fibrosis. Results: miR-15a-5p and miR-152-3p play roles in body repair processes, and pulmonary fibrosis can be considered a form of reparative response by the body. Although the initial purpose of fibrotic repair is to restore normal body function, excessive tissue fibrosis, unlike scar formation following external skin trauma, can significantly and adversely affect the body. Modulating the Wnt/ß-catenin signaling pathway is beneficial in alleviating tissue fibrosis in various diseases. Conclusions: In this study, we delineate the association between miR-15a-5p and miR-152-3p and the Wnt/ß-catenin signaling pathway, presenting a novel concept for addressing paraquat-induced pulmonary fibrosis.


Assuntos
MicroRNAs , Paraquat , Fibrose Pulmonar , Via de Sinalização Wnt , MicroRNAs/metabolismo , MicroRNAs/genética , Via de Sinalização Wnt/efeitos dos fármacos , Paraquat/toxicidade , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Humanos , Animais , beta Catenina/metabolismo , beta Catenina/genética
5.
Heliyon ; 10(12): e32914, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994113

RESUMO

Objective: Prostate cancer, marked by a high incidence and mortality rate, presents a significant challenge, especially in the context of castration-resistant prostate cancer (CRPC) with limited treatment options due to drug resistance. This study aims to explore the anti-tumor effects of Xihuang Pills (XHP) on CRPC, focusing on metabolic reprogramming and the Wnt/ß-catenin pathway. Methods: In vitro and in vivo biofunctional assays were employed to assess the efficacy and mechanisms of XHP. Subcutaneous xenografts of PC3 in mice served as an in vivo model to evaluate XHP's anti-tumor activity. Tumor volume, weight, proliferation, and apoptosis were monitored. Various assays, including CCK8, TUNEL assay, QRT-PCR, and Western Blotting, were conducted to measure metabolic reprogramming, proliferation, apoptosis, and cell cycle in prostate cancer cells. RNA-seq analysis predicted XHP's impact on prostate cancer, validating the expression of Wnt/ß-catenin-related proteins and mRNA. Additionally, 58 compounds in XHP were identified via LC-MS/MS, and molecular docking analysis connected these compounds to key genes. Results: In vitro and in vivo experiments demonstrated that XHP significantly inhibited CRPC cell viability, induced apoptosis, and suppressed invasion and migration. mRNA sequencing revealed differentially expressed genes, with functional enrichment analysis indicating modulation of key biological processes. XHP treatment downregulated Wnt signaling pathway-related genes, including CCND2, PRKCG, and CCN4. Moreover, XHP effectively inhibited glucose uptake and lactate production, leading to reduced HIF-1α and glycolytic enzymes (GLUT1, HK2, PKM2), suggesting its potential in attenuating the Warburg effect. Molecular docking analysis suggested a plausible interaction between XHP's active compounds and Wnt1 protein, indicating a mechanism through which XHP modulates the Wnt/ß-catenin pathway. Conclusion: XHP demonstrated remarkable efficacy in suppressing the growth, proliferation, apoptosis, migration, and invasiveness of prostate tumors. The interaction between XHP's active constituents and Wnt1 was evident, leading to the inhibition of Wnt1 and downstream anti-carcinogenic factors, thereby influencing the ß-catenin/HIF-1α-mediated glycolysis.

6.
World J Gastrointest Oncol ; 16(6): 2646-2662, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994157

RESUMO

BACKGROUND: Colon cancer (CC) occurrence and progression are considerably influenced by the tumor microenvironment. However, the exact underlying regulatory mechanisms remain unclear. AIM: To investigate immune infiltration-related differentially expressed genes (DEGs) in CC and specifically explored the role and potential molecular mechanisms of complement factor I (CFI). METHODS: Immune infiltration-associated DEGs were screened for CC using bioinformatics. Quantitative reverse transcription polymerase chain reaction was used to examine hub DEGs expression in the CC cell lines. Stable CFI-knockdown HT29 and HCT116 cell lines were constructed, and the diverse roles of CFI in vitro were assessed using CCK-8, 5-ethynyl-2'-deoxyuridine, wound healing, and transwell assays. Hematoxylin and eosin staining and immunohistochemistry staining were employed to evaluate the influence of CFI on the tumorigenesis of CC xenograft models constructed using BALB/c male nude mice. Key proteins associated with glycolysis and the Wnt pathway were measured using western blotting. RESULTS: Six key immune infiltration-related DEGs were screened, among which the expression of CFI, complement factor B, lymphoid enhancer binding factor 1, and SRY-related high-mobility-group box 4 was upregulated, whereas that of fatty acid-binding protein 1, and bone morphogenic protein-2 was downregulated. Furthermore, CFI could be used as a diagnostic biomarker for CC. Functionally, CFI silencing inhibited CC cell proliferation, migration, invasion, and tumor growth. Mechanistically, CFI knockdown downregulated the expression of key glycolysis-related proteins (glucose transporter type 1, hexokinase 2, lactate dehydrogenase A, and pyruvate kinase M2) and the Wnt pathway-related proteins (ß-catenin and c-Myc). Further investigation indicated that CFI knockdown inhibited glycolysis in CC by blocking the Wnt/ß-catenin/c-Myc pathway. CONCLUSION: The findings of the present study demonstrate that CFI plays a crucial role in CC development by influencing glycolysis and the Wnt/ß-catenin/c-Myc pathway, indicating that it could serve as a promising target for therapeutic intervention in CC.

7.
World J Gastrointest Oncol ; 16(6): 2769-2780, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38994173

RESUMO

BACKGROUND: Wnt/FZD-mediated signaling pathways are activated in more than 90% of hepatocellular carcinoma (HCC) cell lines. As a well-known secretory glycoprotein, Wnt3 can interact with FZD receptors on the cell surface, thereby activating the Wnt/ß-catenin signaling pathway. However, the N-glycosylation modification site of Wnt3 and the effect of this modification on the biological function of the protein are still unclear. AIM: To investigate the effect of Wnt3 N-glycosylation on the biological function of HCC cells. METHODS: Site-directed mutagenesis was used to verify the Wnt3 N-glycosylation sites, actinomycin D treatment was used to detect the stability of Wnt3 after site-directed mutation, the binding of the N-glycosylation site-directed mutant Wnt3 to FZD7 was observed by laser confocal microscopy, and the effects of the N-glycosylation site-directed mutation of Wnt3 on the Wnt/ß-catenin signaling pathway and the progression of HCC cells were detected by western blot and cell function experiments. RESULTS: Wnt3 has two N-glycosylation-modified sites (Asn90 and Asn301); when a single site at amino acid 301 is mutated, the stability of Wnt3 is weakened; the binding ability of Wnt3 to FZD7 decreases when both sites are mutated simultaneously; and the level of proteins related to the Wnt/ß-catenin signaling pathway is downregulated. Cell proliferation, migration and invasion are also weakened in the case of single 301 site and double-site mutations. CONCLUSION: These results indicate that by inhibiting the N-glycosylation of Wnt3, the proliferation, migration, invasion and colony formation abilities of liver cancer cells can be weakened, which might provide new therapeutic strategies for clinical liver cancer in the future.

8.
Integr Biol (Camb) ; 162024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38952079

RESUMO

Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. ß-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation. Evidence suggests that ß-catenin is involved in flow sensing and responds to tensional forces, impacting junction dynamics. The mechanoregulation of ß-catenin signaling is context-dependent, influenced by the type and duration of mechanical loads. In endothelial cells, ß-catenin's nuclear translocation and signaling are influenced by shear stress and strain, affecting endothelial permeability. The study investigates how shear stress, strain, and surface topography impact adherens junction dynamics, regulate ß-catenin localization, and influence endothelial barrier properties. Insight box Mechanical loads are potent regulators of endothelial functions through not completely elucidated mechanisms. Surface topography, wall shear stress and cyclic wall deformation contribute overlapping mechanical stimuli to which endothelial monolayer respond to adapt and maintain barrier functions. The use of custom developed flow chamber and bioreactor allows quantifying the response of mature human endothelial to well-defined wall shear stress and gradients of strain. Here, the mechanoregulation of ß-catenin by substrate topography, wall shear stress, and cyclic stretch is analyzed and linked to the monolayer control of endothelial permeability.


Assuntos
Junções Aderentes , Células Endoteliais , Células Endoteliais da Veia Umbilical Humana , Mecanotransdução Celular , Estresse Mecânico , beta Catenina , beta Catenina/metabolismo , Humanos , Mecanotransdução Celular/fisiologia , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Resistência ao Cisalhamento , Via de Sinalização Wnt , Fenômenos Biomecânicos
9.
J Agric Food Chem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984968

RESUMO

The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/ß-Catenin/GSK-3ß pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/ß-Catenin/GSK-3ß pathway.

10.
J Gastrointest Oncol ; 15(3): 974-986, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989412

RESUMO

Background: Research has demonstrated that apolipoprotein L1 (APOL1) has a role in the emergence and progression of a number of malignant cancers. It is unclear, however, how APOL1 functions in colorectal cancer (CRC). In this study, we examined the possible molecular processes underlying APOL1's biological role in CRC. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify APOL1 expression in patients with CRC and the cell line of cancer tissue. Following transfection of human colon carcinoma cells (HCT116) and human colon adenocarcinoma cells (SW1116) with sh-APOL1, the effects of APOL1 on the biological behavior of CRC cell lines were examined. In nude mice, the effect of APOL1 on tumor growth was noted. The protein interaction between APOL1 and RUNX1 was detected via coimmunoprecipitation. The expression of relevant proteins and cell biological behaviors were examined to confirm the APOL1-RUNX1 pathway in CRC cell lines. Results: The CRC tissues and cells exhibited elevated expression of APOL1. HCT116 and SW1116 cells' proliferation, migration, and invasion were suppressed by sh-APOL1, and sh-APOL1 also increased the expression of E-cadherin and decreased the expression of RUNX1, cyclin D1, ß-catenin, N-cadherin, and vimentin. APOL1 bound to the RUNX1 protein and regulated its protein levels. The counteractive effect of sh-APOL1 epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion of CRC cells was counteracted by the overexpression of RUNX1. By silencing APOL1, the Wnt-ß-catenin pathway was able to restrain EMT and regulate the biological behavior processes in CRC cells. Conclusions: APOL1 has potential as a diagnostic biomarker for CRC. By preventing the Wnt-ß-catenin pathway from being activated, the sh-APOL1-binding protein RUNX1 inhibited the EMT and biological behavior of CRC cells.

11.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000355

RESUMO

Postmenopausal osteoporosis, characterized by an imbalance between osteoclast-mediated bone resorption and osteoblast-driven bone formation, presents substantial health implications. In this study, we investigated the role of black goat extract (BGE), derived from a domesticated native Korean goat, estrogen-like activity, and osteoprotective effects in vitro. BGE's mineral and fatty acid compositions were analyzed via the ICP-AES method and gas chromatography-mass spectrometry, respectively. In vitro experiments were conducted using MCF-7 breast cancer cells, MC3T3-E1 osteoblasts, and RAW264.7 osteoclasts. BGE exhibits a favorable amount of mineral and fatty acid content. It displayed antimenopausal activity by stimulating MCF-7 cell proliferation and augmenting estrogen-related gene expression (ERα, ERß, and pS2). Moreover, BGE positively impacted osteogenesis and mineralization in MC3T3-E1 cells through Wnt/ß-catenin pathway modulation, leading to heightened expression of Runt-related transcription factor 2, osteoprotegerin, and collagen type 1. Significantly, BGE effectively suppressed osteoclastogenesis by curtailing osteoclast formation and activity in RAW264.7 cells, concurrently downregulating pivotal signaling molecules, including receptor activator of nuclear factor κ B and tumor necrosis factor receptor-associated factor 6. This study offers a shred of preliminary evidence for the prospective use of BGE as an effective postmenopausal osteoporosis treatment.


Assuntos
Diferenciação Celular , Cabras , Osteoblastos , Osteoclastos , Osteogênese , Animais , Camundongos , Células RAW 264.7 , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/citologia , Humanos , Estrogênios/farmacologia , Proliferação de Células/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Células MCF-7 , Extratos de Tecidos/farmacologia
12.
Chem Biol Interact ; : 111143, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39004389

RESUMO

Deregulated activation of the Wnt/ß-catenin pathway is observed in many types of human malignancies including colon cancer. Abrogation of the Wnt/ß-catenin pathway has been demonstrated as an effective way of inducing cancer cell death. Herein, a new isoxazolyl-urea (QR-5) was synthesized and examined its efficacy on the viability of colon cancer cell lines. QR-5 displayed selective cytotoxicity towards colon cancer cells over normal counterparts. QR-5 induced apoptosis as evidenced by elevation in sub-G1 cells, decrease in Bcl-2, MMP-9, COX-2, VEGF and cleavage of PARP and caspase-3. QR-5 reduced the mitochondrial membrane potential, decreased the expression of Alix and elevated the expression of ATF4 and CHOP indicating the induction of paraptosis. The inhibitor of apoptosis (Z-DEVD-FMK) and paraptosis (CHX) could not restore Alix expression and PARP cleavage in QR-5 treated cells, respectively suggesting the complementation between the two cell death pathways. QR-5 suppressed the expression of Wnt/ß-catenin pathway proteins which was also evidenced by the downregulation of nuclear and cytoplasmic ß-catenin. The dependency of QR-5 on ß-catenin for inducing apoptosis and paraptosis was demonstrated using knockdown experiments using ß-catenin specific siRNA. Overall, QR-5 induces apoptosis as well as paraptosis by mitigating the Wnt/ß-catenin axis in colon cancer cells.

13.
Cell Signal ; 121: 111287, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969191

RESUMO

The progression of osteoarthritis (OA) includes the initial inflammation, subsequent degradation of the extracellular matrix (ECM), and chondrocyte apoptosis. Down syndrome candidate region 1 (DSCR1) is a stress-responsive gene and expresses in varied types of cells, including chondrocytes. Bioinformatics analysis of GSE103416 and GSE104739 datasets showed higher DSCR1 expression in the inflamed cartilage tissues and chondrocytes of OA. DSCR1 had two major isoforms, isoform 1 (DSCR1-1) and isoform 4 (DSCR1-4). We found that DSCR1-1 had a faster (in vitro) and higher expression (in vivo) response to OA compared to DSCR1-4. IL-1ß-induced apoptosis, inflammation, and ECM degradation in chondrocytes were attenuated by DSCR1-1 overexpression. DSCR1-1 triggered the phosphorylation of cAMP response element-binding 1 (CREB1) at 133 serine sites by decreasing calcineurin activity. Moreover, activated CREB1 moved into the cell nucleus and combined in the promoter regions of aldehyde dehydrogenase 2 (ALDH2), thus enhancing its gene transcription. ALDH2 could recover Wnt/ß-catenin signaling transduction by enhancing phosphorylation of ß-catenin at 33/37 serine sites and inhibiting the migration of ß-catenin protein from the cellular matrix to the nucleus. In vivo, adenoviruses (1 × 108 PFU) overexpressing DSCR1-1 were injected into the articular cavity of C57BL/6 mice with medial meniscus surgery-induced OA, and it showed that DSCR1-1 overexpression ameliorated cartilage injury. Collectively, our study demonstrates that DSCR1-1 may be a potential therapeutic target of OA.

14.
Fitoterapia ; 177: 106116, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38977254

RESUMO

Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/ß-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/ß-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.

15.
J Cancer Res Clin Oncol ; 150(7): 345, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981872

RESUMO

BACKGROUND: Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS: The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS: The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/ß-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION: HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/ß-catenin pathway underlines its potential as a therapeutic target.


Assuntos
Proliferação de Células , Proteína Semelhante a ELAV 1 , Neoplasias do Endométrio , RNA Longo não Codificante , Fatores de Transcrição SOXF , Humanos , RNA Longo não Codificante/genética , Feminino , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Neoplasias do Endométrio/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Prognóstico , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Animais , Camundongos , Pessoa de Meia-Idade , Via de Sinalização Wnt/genética , Angiogênese
16.
Cells ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995004

RESUMO

Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/ß-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/ß-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.


Assuntos
Polpa Dentária , Dentina , Regeneração , Via de Sinalização Wnt , Humanos , Dentina/metabolismo , Polpa Dentária/metabolismo , Regeneração/fisiologia , Animais , beta Catenina/metabolismo
17.
Bone Rep ; 21: 101777, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38952406

RESUMO

We report a case of a patient with a de novo germline heterozygous truncating variant of CTNNB1 gene (c.2172del, p.Tyr724Ter) causing neurodevelopmental disorder with spastic diplegia and visual defects syndrome (NEDSDV) associated with a new clinical feature - severe pediatric-onset osteoporosis and multiple fractures. A functional effect of the identified variant was demonstrated using adipose-tissue derived primary mesenchymal stem cells, where we detected the alteration of CTNNB1mRNA and ß-catenin protein levels using real-time PCR and Western blot analysis.

18.
Calcif Tissue Int ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953964

RESUMO

Ankle osteoarthritis is a relatively understudied condition and the molecular mechanisms involved in its development are not well understood. This investigation aimed to explore the role and underlying molecular mechanisms of Yes-associated protein (YAP) in rat ankle osteoarthritis. The results demonstrated that YAP expression levels were abnormally increased in the ankle osteoarthritis cartilage model. In addition, knockdown of YAP expression was shown to hinder the imbalance in ECM metabolism induced by IL-1ß in chondrocytes, as demonstrated by the regulation of matrix metalloproteinase (MMP)-3, MMP-9, and MMP-13, a disintegrin, metalloprotease with thrombospondin motifs, aggrecan, and collagen II expression. Additional studies revealed that downregulation of YAP expression markedly inhibited the overexpression of ß-catenin stimulated by IL-1ß. Furthermore, inhibition of the Wnt/ß-catenin signaling pathway reversed the ECM metabolism imbalance caused by YAP overexpression in chondrocytes. It is important to note that the YAP-specific inhibitor verteporfin (VP) significantly delayed the progression of ankle osteoarthritis. In conclusion, the findings highlighted the crucial role of YAP as a regulator in modulating the progression of ankle osteoarthritis via the Wnt/ß-catenin signaling pathway. These findings suggest that pharmacological inhibition of YAP can be an effective and critical therapeutic target for alleviating ankle osteoarthritis.

19.
Pharmacol Rev ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955509

RESUMO

The class F of G protein-coupled receptors (GPCRs) consists of ten Frizzleds (FZD1-10) and Smoothened (SMO). FZDs bind and are activated by secreted lipoglycoproteins of the Wingless/Int-1 (WNT) family and SMO is indirectly activated by the Hedgehog (Hh) family of morphogens acting on the transmembrane protein Patched (PTCH). The advance of our understanding of FZDs and SMO as dynamic transmembrane receptors and molecular machines, which emerged during the past 14 years since the first class F GPCR IUPHAR nomenclature report, justifies an update. This article focuses on the advances in molecular pharmacology and structural biology providing new mechanistic insight into ligand recognition, receptor activation mechanisms, signal initiation and signal specification. Furthermore, class F GPCRs continue to develop as drug targets, and novel technologies and tools such as genetically encoded biosensors and CRISP/Cas9 edited cell systems have contributed to refined functional analysis of these receptors. Also, advances in crystal structure analysis and cryogenic electron microscopy contribute to a rapid development of our knowledge about structure-function relationships providing a great starting point for drug development. Despite the progress questions and challenges remain to fully understand the complexity of the WNT/FZD and Hh/SMO signaling systems. Significance Statement The recent years of research have brought about substantial functional and structural insight into mechanisms of activation of Frizzleds and Smoothened. While the advance furthers our mechanistic understanding of ligand recognition, receptor activation, signal specification and initiation, broader opportunities emerge that allow targeting class F GPCRs for therapy and regenerative medicine employing both biologics and small molecule compounds.

20.
Can J Dent Hyg ; 58(2): 111-119, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38974823

RESUMO

Objective: Detecting oral lesions at high risk of becoming cancer may enable early interventions to prevent oral cancer. The diagnosis of dysplasia in an oral lesion is used to predict this risk but is subject to interobserver and intraobserver variability. Studying biomarkers or molecular markers that reflect underlying molecular alterations can serve as an additional and objective method of risk assessment. E-cadherin and beta-catenin, molecular markers of epithelial-mesenchymal transition (EMT), potentially contribute to early malignant progression in oral tissue. This narrative review provides an overview of EMT, its relation to oral cancer, and the interaction among E-cadherin, beta-catenin, and the Wnt pathway in malignant progression of oral tissue. Methods: Full-text literature on EMT, E-cadherin, beta-catenin, oral epithelial dysplasia, and oral cancer was retrieved from PubMed and Google Scholar. Results: Sixty original research articles, reviews, and consensus statements were selected for review. Discussion: EMT, a biological mechanism characterized by epithelial and mesenchymal changes, can contribute to cancer development. Molecular markers of EMT including TWIST, vimentin, and N-cadherin may serve as prognostic markers of oral cancer. Dependent on Wnt pathway activity and the loss of membranous E-cadherin, E-cadherin and beta-catenin can play various roles along the spectrum of malignant progression, including tumour inhibition, early tumour progression, and late-stage tumour progression. Cross-sectional immunohistochemical research has found changes in expression patterns of E-cadherin and beta-catenin from normal oral tissue, oral epithelial dysplasia, to oral squamous cell carcinoma. Conclusion: Future research should explore the longitudinal role of EMT markers in predicting malignant progression in oral tissue.


Objectif: La détection de lésions buccales présentant un risque élevé d'évoluer en cancer peut permettre des interventions précoces pour prévenir le cancer de la bouche. Le diagnostic de dysplasie dans le cas de lésions buccales sert à prédire ce risque, mais il est soumis à une variabilité d'un observateur à l'autre et avec le même observateur. L'étude de marqueurs biologiques ou de marqueurs moléculaires correspondant à des altérations moléculaires sous-jacentes peut constituer une méthode objective supplémentaire d'évaluation des risques. L'E-cadhérine et la bêta-caténine, des marqueurs moléculaires de la transition épithélio-mésenchymateuse (TEM), pourraient contribuer aux premières étapes de l'évolution maligne du tissu buccal. Cette revue narrative donne un aperçu de la TEM, de ses liens avec le cancer de la bouche et de l'interaction entre l'E-cadhérine, la bêta-caténine et la voie de signalisation Wnt dans l'évolution maligne du tissu buccal. Méthodes: On a obtenu le texte intégral d'études portant sur la TEM, l'E-cadhérine, la bêta-caténine, la dysplasie épithéliale buccale et le cancer de la bouche sur PubMed et Google Scholar. Résultats: Soixante articles sur des études originales, des revues et des déclarations de consensus ont été sélectionnés aux fins d'examen. Discussion: La TEM, un mécanisme biologique caractérisé par des changements épithéliaux et mésenchymateux, peut contribuer à l'apparition d'un cancer. Les marqueurs moléculaires de la TEM, notamment TWIST, la vimentine et la N-cadhérine, peuvent servir de marqueurs pronostiques du cancer de la bouche. En fonction de l'activité de la voie de signalisation Wnt et de la perte de l'E-cadhérine membraneuse, l'E-cadhérine et la bêta-caténine peuvent jouer divers rôles dans le spectre de l'évolution maligne, notamment l'inhibition tumorale, la progression tumorale précoce et l'évolution tumorale avancée. Des études transversales d'immunohistochimie ont révélé des changements dans les modèles d'expression de l'E-cadhérine et de la bêta-caténine avec le passage du tissu buccal normal, de la dysplasie épithéliale buccale au carcinome squameux de la bouche. Conclusion: À l'avenir, des études devraient explorer le rôle longitudinal des marqueurs de la TEM dans la prévision de l'évolution maligne dans les tissus buccaux.


Assuntos
Biomarcadores Tumorais , Caderinas , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Neoplasias Bucais , beta Catenina , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/diagnóstico , Caderinas/metabolismo , Caderinas/genética , beta Catenina/metabolismo , beta Catenina/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...