Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.108
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409605, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38975961

RESUMO

Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.

2.
Chemosphere ; 362: 142652, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936489

RESUMO

The simultaneous removal of anionic and cationic heavy metals presents a challenge for adsorbents. In this study, acetate (Ac-) was utilized as the intercalating anion for layered double hydroxide (LDH) to prepare a novel biochar composite adsorbent (Ac-LB) designed for the adsorption of Pb(II), Cu(II), and As(V). By utilizing Ac- as the intercalating anion, the interlayer space of the LDH was enlarged from 0.803 nm to 0.869 nm, exposing more adsorption sites for the LDH and enhancing the affinity for heavy metals. The results of the adsorption experiments showed that the adsorption effect of Ac-LB on heavy metals was significantly improved compared to the original FeMg-LDH modified biochar composites (LB), and the maximum adsorption capacity of Pb(II), Cu(II), and As(V) were 402.70, 68.50, and 21.68 mg/g, respectively. Wastewater simulation tests further confirmed the promising application of Ac-LB for heavy metal adsorption. The analysis of the adsorption mechanism revealed that surface complexation, electrostatic adsorption, and chemical deposition were the main mechanisms of action between heavy metals (Pb(II) and Cu(II)) and Ac-LB. Additionally, Cu(II) ions underwent a homogeneous substitution reaction with Ac-LB. The adsorption process of As(V) by Ac-LB mainly relied on complexation and ion-exchange reactions. Lastly, the modification of the LDH structure by Ac- as an intercalating anion, thereby increasing the affinity for heavy metals, was further illustrated using density-functional theory (DFT) calculations.

3.
ACS Appl Mater Interfaces ; 16(24): 31209-31217, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38834935

RESUMO

Constructing a 1D/3D perovskite heterojunction has recently emerged as a prevalent approach for elevating the efficiency and stability of perovskite solar cells (PSCs), due to the excellent defect-passivation capacity and enhanced resistance to water and oxygen of 1D perovskite. However, the 1D perovskite commonly exhibits much poorer charge carrier transport ability when compared with its 3D counterpart. Tailoring the intrusion depth of a 1D perovskite into the 1D/3D heterojunction is thus of key importance for PSCs but remains a great challenge. We introduce herein a novel anion-regulation strategy that can effectively tune the intrusion behavior of 1D perovskite into 3D perovskite to form a 1D/3D heterojunction with gradual structure and gradient energy-level alignment. This gradual 1D/3D-perovskite interface leads to outstanding defect passivation performance, together with a desired balance between charge transport and moisture/oxygen blocking. Consequently, the PSCs with a 1D/3D perovskite heterojunction resulting from tetra-n-butylammonium acetate (TBAAc) treatment yield a remarkable enhancement in power conversion efficiency (PCE) from 18.4 to 20.1%. The unencapsulated device also demonstrates excellent stability and retains 90% of its initial PCE after 2400 h of storage in the air atmosphere with 30 ± 5% humidity at 25 ± 5 °C.

4.
Polymers (Basel) ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891429

RESUMO

The widening of possible areas of practical uses for zero-valent tellurium nanoparticles (Te0NPs) from biomedicine to optoelectronic and thermoelectric applications determines the actuality of the development of simple and affordable methods for their preparation. Among the existing variety of approaches to the synthesis of Te0NPs, special attention should be paid to chemical methods, and especially to "green" approaches, which are based on the use of precursors of tellurium in their powder bulk form and natural galactose-containing polysaccharides-arabinogalactan (Ar-Gal), galactomannan-(GM-dP) and κ-carrageenan (κ-CG) acting as ligands stabilizing the surface of the Te0NPs. The use of basic-reduction system "N2H4 H2O-NaOH" for preliminary activation of bulk-Te and Ar-Gal, GM-dP and κ-CG allowed us to obtain in aqueous medium a number of stable nanocomposites consisting of Te0NPs stabilized by the polysaccharides' macromolecules. By varying the precursor ratio, different morphologies of nanoparticles were obtained, ranging from spheres at a polysaccharide/Te ratio of 100:1 to rice-like at a 10:1 ratio. The type (branched, combed, or linear sulfated) of polysaccharide and its molecular weight value determined the size of the nanoparticles. Thus, the galactose-containing polysaccharides that were selected for this study may be promising renewable materials for the production of water-soluble Te0NPs with different morphology on this basis.

5.
Adv Mater ; : e2402924, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857474

RESUMO

Layered perovskites consist of stacks of inorganic semiconducting metal-halide octahedra lattices sandwiched between organic layers with typically dielectric behavior. The in-plane confinement of electrical carriers in such two-dimensional metal halide perovskites drives a large range of appealing electronic properties, such as strong exciton binding, anisotropic charge diffusion, and polarization-directionality. Heterostructures provide additional control on carrier diffusion and localization, and in-plane heterojunctions are interesting because of the associated high charge mobility. Here, this work demonstrates a versatile solution-based approach to fabricate in-plane heterostructures with different halide composition in two-dimensional lead-halide perovskite microcrystals. This leads to spatially separated halide phases with different band gap and light emission. Interestingly, the composition of the exchanged phase and the morphology of the phase boundary depends on the exchange route, which can be related to the preferred localization of the halides at the equatorial or axial octahedra positions that either leads to dissolution and recrystallization of the octahedra lattice (for bromide to iodide), or allows for ion diffusion within the lattice (for iodide to bromide). These detailed insights on the ion exchange processes in layered perovskites will stimulate the development of heterostructures that can be tailored for different applications such as photocatalysis, energy storage, and light emission.

6.
Angew Chem Int Ed Engl ; : e202406742, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842522

RESUMO

A selective deelectronation reagent with very high potential of +2.00 (solution) / +2.41 V (solid-state) vs. Fc+/0 and based on a room temperature stable perfluoronaphthalene (naphthaleneF) radical cation salt was developed and applied. The solid-state deelectronation of commercial naph-tha-leneF with [NO]+[F{Al(ORF)3}2]- generates [naphthaleneF]+∙[F{Al(ORF)3}2]- (ORF = OC(CF3)3) in gram scale. Thermo-chemical analysis unravels the solid-state de-electronation potential of the starting [NO]+-reagent to be +2.34 V vs. Fc+/0 with [F{Al(ORF)3}2]- counterion, but only +1.14 V vs. Fc+/0 with the small [SbF6]- ion. Selective reactions demonstrate the selectivity of [naphthaleneF]+∙ for deelectronation of a multitude of organ(ometall)ic molecules and elements in solution: providing the molecular struc-tures of the acene dications [tetracene]2+, [pentacene]2+ or spectroscopic evi-dence for the carbo-nyl complex of the ferrocene dication [Fc(CO)]2+, the [P9]+ cation from white phosphor-us, the solvent-free copper(I) salt starting from copper metal and the dicationic Fe(IV)-scorpionate complex [Fe(sc)2]2+.

7.
Adv Mater ; : e2310245, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839065

RESUMO

Non-aqueous electrolytes, generally consisting of metal salts and solvating media, are indispensable elements for building rechargeable batteries. As the major sources of ionic charges, the intrinsic characters of salt anions are of particular importance in determining the fundamental properties of bulk electrolyte, as well as the features of the resulting electrode-electrolyte interphases/interfaces. To cope with the increasing demand for better rechargeable batteries requested by emerging application domains, the structural design and modifications of salt anions are highly desired. Here, salt anions for lithium and other monovalent (e.g., sodium and potassium) and multivalent (e.g., magnesium, calcium, zinc, and aluminum) rechargeable batteries are outlined. Fundamental considerations on the design of salt anions are provided, particularly involving specific requirements imposed by different cell chemistries. Historical evolution and possible synthetic methodologies for metal salts with representative salt anions are reviewed. Recent advances in tailoring the anionic structures for rechargeable batteries are scrutinized, and due attention is paid to the paradigm shift from liquid to solid electrolytes, from intercalation to conversion/alloying-type electrodes, from lithium to other kinds of rechargeable batteries. The remaining challenges and key research directions in the development of robust salt anions are also discussed. This article is protected by copyright. All rights reserved.

8.
Angew Chem Int Ed Engl ; : e202406719, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850111

RESUMO

Pores containing molecular adapters provide internal selective binding sites, thereby allowing the stochastic sensing of analytes. Herein, we demonstrate that semiaza-bambusuril (BU) acts as a non-covalent molecular adapter when lodged within the lumen of the wild-type α-hemolysin (WT-αHL) protein pore. Because the bambusurils are recognized as anion receptors, the anion binding site within the adapter-nanopore complex allows the detection of chloride anions, thus converting a non-selective pore into an anion sensor.

9.
Angew Chem Int Ed Engl ; : e202405936, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877830

RESUMO

Although carbanions, which are usually regarded as reactive species and powerful metalation reagents, can be stabilized through choice of the substitution pattern, they have rarely been considered for the design of weakly coordinating anions (WCA).  Here, we report on an evaluation of the potential of a series of differently substituted carbanions to serve as WCA by computational methods. This led us to the synthesize the water- and air-stable allyl anion 1 with triflyl and 3,5-bis(trifluoromethyl)phenyl (ArF) moieties, which can be isolated in high yields even on a gram-scale. Single crystal X-ray crystallography and NMR studies confirmed the weak coordination ability of the anion by showing negligible or only weak interactions with different cations. This property enabled the application of 1 in the stabilization of reactive group 14 and 15 cations. In addition to the crystallization of a phosphenium cation, the first all-carbon salt with a non-aromatic carbanion is reported, which revealed to be a convenient reagent for hydride abstraction such as from silanes. Overall, this work demonstrates the so far untapped potential of carbanions as WCA, that are accessible with a variety of different cations for various applications.

10.
Angew Chem Int Ed Engl ; : e202408750, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937258

RESUMO

We disclose a benzylic C-H oxidative coupling reaction with alcohols that proceeds through a synergistic deprotonation, halogenation and substitution sequence. The combination of tert-butoxide bases with 2-halothiophene halogen oxidants enables the first general protocol for generating and using benzyl halides through a deprotonative pathway. In contrast to existing radical-based pathways for C-H functionalization, this process is guided by C-H acidity trends. This gives rise to new synthetic capabilities, including the ability to functionalize diverse methyl(hetero)arenes, tolerance of oxidizable and nucleophilic functional groups, precision site-selectivity for polyalkylarenes and use of a double C-H etherification process to controllably oxidize methylarenes to benzaldehydes.

11.
Gels ; 10(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786249

RESUMO

Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called "soft" materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine-silver sol-CSS) with sodium halides. Modern instrumental techniques such as viscosimetry, UV spectroscopy, dynamic light scattering, zeta potential measurements, SEM and EDS identified that adding fluoride anions to CSS is able to form stable hydrogels of a thixotropic nature, while Cl-, Br- and I- lead to precipitation. The self-assembly process proceeds using a narrow concentration range of F-. An increase in the fluoride anion content in the system leads to a change in the gel network morphology from elongated structures to spherical ones. This fact is reflected in a decrease in the gel viscosity and a number of gel-sol-gel transition cycles. The mechanism of F-'s interaction with hydrosol includes the condensation of anions on the positive surface of the CSS nanoparticles, their binding via electrostatic forces and the formation of a resulting gel carcass. In vitro analysis showed that the hydrogels suppressed human squamous carcinoma cells at a micromolar sample concentration. The obtained soft gels could have potential applications against cutaneous malignancy and as carriers for fluoride anion and other bioactive substance delivery.

12.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791275

RESUMO

A comprehensive thermodynamic and structural study of the complexation affinities of tetra (L1), penta (L2), and hexaphenylalanine (L3) linear peptides towards several inorganic anions in acetonitrile (MeCN) and N,N-dimethylformamide (DMF) was carried out. The influence of the chain length on the complexation thermodynamics and structural changes upon anion binding are particularly addressed here. The complexation processes were characterized by means of spectrofluorimetric, 1H NMR, microcalorimetric, and circular dichroism spectroscopy titrations. The results indicate that all three peptides formed complexes of 1:1 stoichiometry with chloride, bromide, hydrogen sulfate, dihydrogen phosphate (DHP), and nitrate anions in acetonitrile and DMF. In the case of hydrogen sulfate and DHP, anion complexes of higher stoichiometries were observed as well, namely those with 1:2 and 2:1 (peptide:anion) complexes. Anion-induced peptide backbone structural changes were studied by molecular dynamic simulations. The anions interacted with backbone amide protons and one of the N-terminal amine protons through hydrogen bonding. Due to the anion binding, the main chain of the studied peptides changed its conformation from elongated to quasi-cyclic in all 1:1 complexes. The accomplishment of such a conformation is especially important for cyclopeptide synthesis in the head-to-tail macrocyclization step, since it is most suitable for ring closure. In addition, the studied peptides can act as versatile ionophores, facilitating transmembrane anion transport.


Assuntos
Ânions , Termodinâmica , Ânions/química , Peptídeos/química , Peptídeos/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Acetonitrilas/química , Dimetilformamida/química , Dicroísmo Circular
13.
Environ Sci Technol ; 58(19): 8576-8586, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696240

RESUMO

Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.


Assuntos
Substâncias Húmicas , Manganês , Oxirredução , Fenóis , Manganês/química , Fenóis/química , Ânions , Compostos de Manganês/química , Óxidos/química , Poluentes Químicos da Água/química
14.
Angew Chem Int Ed Engl ; : e202406089, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781000

RESUMO

Silyl anions have garnered significant attention due to their synthetic abilities. However, previously reported silyl anions have been limited to either trigonal-pyramidal or trigonal-planar geometries, which confine them primarily as nucleophiles in substitution reactions. Herein, we report the isolation of the unprecedented T-shaped planar silyl anion salt 2 by employment of a geometrically constrained triamido pincer ligand. Theoretical calculations disclosed that the silicon centre in 2 possesses both a lone pair of electrons and an empty 3pz orbital. In addition to nucleophilic substitution reactions with Ph3PAuCl and W(CO)6, 2 readily undergoes oxidative additions with CO2 and 2,6-dimethylphenylisonitrile at room temperature. Furthermore, under mild conditions, compound 2 cleaves Csp2-H, Csp2-H, and H-H bonds in 1,2,4,5-tetrafluorobenzene, an intramolecular iPr group, and dihydrogen, representing the first examples of C-H and H-H activations mediated by a silyl anion, respectively. This work unveils new reactivity of silyl anions owing to the non-classical geometry and electronic structure.

15.
Chem Asian J ; : e202400191, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735841

RESUMO

This review article aims to provide an overview of the strategies employed to prepare noble gas anions under different environments and experimental conditions, and of the bonding motifs typically occurring in these species. Observed systems include anions fixed into synthesized salts, detected in the gas phase or in high-pressure devices. The major role of the theoretical calculations is also highlighted, not only in support of the experiments, but also as effective in predicting still unreported species. The chemistry of noble gas anions overall appears as a varied and rich paint, offering fascinating opportunities for both experimentalists and theoreticians.

16.
ChemistryOpen ; 13(5): e202300183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38595069

RESUMO

We present a luminescent Ir(III) complex featuring a bidentate halogen bond donor site capable of strong anion binding. The tailor-made Ir(III)(L)2 moiety offers a significantly higher emission quantum yield (8.4 %) compared to previous Ir(III)-based chemo-sensors (2.5 %). The successful binding of chloride, bromide and acetate is demonstrated using emission titrations. These experiments reveal association constants of up to 1.6×105 M-1. Furthermore, a new approach to evaluate the association constant by utilizing the shift of the emission was used for the first time. The experimentally observed characteristics are supported by quantum chemical simulations.

17.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687950

RESUMO

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Assuntos
Ânions , Hidróxidos , Ozônio , Ozônio/química , Hidróxidos/química , Catálise , Ânions/química
18.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574599

RESUMO

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Assuntos
Ânions , Cromatografia de Fase Reversa , Molibdênio , Ácidos Fosfóricos , Ânions/química , Molibdênio/química , Ácidos Fosfóricos/química , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
19.
Chemistry ; 30(34): e202400714, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38622057

RESUMO

Quantum chemical calculations using ab initio methods at the MRCI+Q(8,9)/def2-QZVPPD and CCSD(T)/def2-QZVPPD levels as well as using density functional theory are reported for the diatomic molecules AeN- (Ae=Ca, Sr, Ba). The anions CaN- and SrN- have electronic triplet (3Π) ground states with nearly identical bond dissociation energies De ~57 kcal/mol calculated at the MRCI+Q(8,9)/def2-QZVPPD level. In contrast, the heavier homologue BaN- has a singlet (1Σ+) ground state, which is only 1.1 kcal/mol below the triplet (3Σ-) state. The computed bond dissociation energy of (1Σ+) BaN- is 68.4 kcal/mol. The calculations at the CCSD(T)-full/def2-QZVPPD and BP86-D3(BJ)/def2-QZVPPD levels are in reasonable agreement with the MRCI+Q(8,9)/def2-QZVPPD data, except for the singlet (1Σ+) state, which has a large multireference character. The calculated atomic partial charges given by the CM5, Voronoi and Hirshfeld methods suggest small to medium-sized Ae←N- charge donation for most electronic states. In contrast, the NBO method predicts for all species medium to large Ae→N- electronic charge donation, which is due to the neglect of the (n)p AOs of Ae atoms as genuine valence orbitals. Neither the bond orders nor the bond lengths correlate with the bond dissociation energies. The EDA-NOCV calculations show that the heavier alkaline earth atoms Ca, Sr, Ba use their (n)s and (n-1)d orbitals for covalent bonding.

20.
Angew Chem Int Ed Engl ; 63(24): e202317177, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38606608

RESUMO

Co-intercalation reactions make graphite a feasible anode in Ca ion batteries, yet the correlation between Ca ion intercalation behaviors and electrolyte structure remains unclear. This study, for the first time, elucidates the pivotal role of anions in modulating the Ca ion solvation structures and their subsequent intercalation into graphite. Specifically, the electrostatic interactions between Ca ion and anions govern the configurations of solvated-Ca-ion in dimethylacetamide-based electrolytes and graphite intercalation compounds. Among the anions considered (BH4 -, ClO4 -, TFSI- and [B(hfip)4]-), the coordination of four solvent molecules per Ca ion (CN=4) leads to the highest reversible capacities and the fastest reaction kinetics in graphite. Our study illuminates the origins of the distinct Ca ion intercalation behaviors across various anion-modulated electrolytes, employing a blend of experimental and theoretical approaches. Importantly, the practical viability of graphite anodes in Ca-ion full cells is confirmed, showing significant promise for advanced energy storage systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...