Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895040

RESUMO

Grapevine development and ripening are complex processes that involve several biochemical pathways, including fatty acid and lipid metabolism. Fatty acids are essential components of lipids, which play crucial roles in fruit maturation and flavor development. However, the dynamics of fatty acid metabolism in grape flowers and berries are poorly understood. In this study, we present those dynamics and investigate the mechanisms of fatty acid homeostasis on 'Thompson Seedless' berries using metabolomic and proteomic analyses. Low-polar metabolite profiling indicated a higher abundance of fatty acids at the pre-flowering and pre-veraison stages. Proteomic analyses revealed that grape flowers and berries display unique profiles of proteins involved in fatty acid biosynthesis, triacylglycerol assembly, fatty acid ß-oxidation, and lipid signaling. These findings show, for the first time, that fatty acid metabolism also plays an important role in the development of non-oil-rich tissues, opening new perspectives about lipid function and its relation to berry quality.


Assuntos
Vitis , Vitis/metabolismo , Frutas/metabolismo , Proteômica , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
2.
Front Physiol ; 14: 1201670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469565

RESUMO

The energy stored in fatty acids is essential for several critical activities of insects, such as embryogenesis, oviposition, and flight. Rhodnius prolixus is an obligatory hematophagous hemipteran and vector of Chagas disease, and it feeds infrequently on very large blood meals. As digestion slowly occurs, lipids are synthesized and accumulate in the fat body, mainly as triacylglycerol, in lipid droplets. Between feeding bouts, proper mobilization and oxidation of stored lipids are crucial for survival, and released fatty acids are oxidized by mitochondrial ß-oxidation. Carnitine palmitoyl transferase I (CPT1) is the enzyme that catalyzes the first reaction of the carnitine shuttle, where the activated fatty acid, acyl-CoA, is converted to acyl-carnitine to be transported into the mitochondria. Here, we investigated the role of CPT1 in lipid metabolism and in resistance to starvation in Rhodnius prolixus. The expression of the CPT1 gene (RhoprCpt1) was determined in the organs of adult females on the fourth day after a blood meal, and the flight muscle showed higher expression levels than the ovary, fat body, and anterior and posterior midgut. RhoprCpt1 expression in the fat body dramatically decreased after feeding, and started to increase again 10 days later, but no changes were observed in the flight muscle. ß-oxidation rates were determined in flight muscle and fat body homogenates with the use of 3H-palmitate, and in unfed females, they were higher in the flight muscle. In the fat body, lipid oxidation activity did not show any variation before or at different days after feeding, and was not affected by the presence of etomoxir or malonyl-CoA. We used RNAi and generated RhoprCPT1-deficient insects, which surprisingly did not show a decrease in measured 3H-palmitate oxidation rates. However, the RNAi-knockdown females presented increased amounts of triacylglycerol and larger lipid droplets in the fat body, but not in the flight muscle. When subjected to starvation, these insects had a shorter lifespan. These results indicated that the inhibition of RhoprCpt1 expression compromised lipid mobilization and affected resistance to starvation.

3.
Mol Cell Biochem ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402020

RESUMO

Obesity is closely associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatic fat accumulation and hepatocyte injury. Preclinical studies have shown exacerbated weight gain associated with an obesogenic gluten-containing diet. However, whether gluten affects obesity-induced hepatic lipid accumulation still remains unclear. We hypothesized that gluten intake could affect fatty liver development in high-fat diet (HFD)-induced obese mice. Thus, we aimed to investigate the impact of gluten intake on NAFLD in HFD-induced obese mice. Male apolipoprotein E-deficient (Apoe-/-) mice were fed with a HFD containing (GD) or not (GFD) vital wheat gluten (4.5%) for 10 weeks. Blood and liver were collected for further analysis. We found that gluten exacerbated weight gain, hepatic fat deposition, and hyperglycemia without affecting the serum lipid profile. Livers of the GD group showed a larger area of fibrosis, associated with the expression of collagen and MMP9, and higher expression of apoptosis-related factors, p53, p21, and caspase-3. The expression of lipogenic factors, such as PPARγ and Acc1, was more elevated and factors related to beta-oxidation, such as PPARα and Cpt1, were lower in the GD group compared to the GFD. Further, gluten intake induced a more significant expression of Cd36, suggesting higher uptake of free fatty acids. Finally, we found lower protein expression of PGC1α followed by lower activation of AMPK. Our data show that gluten-containing high-fat diet exacerbated NAFLD by affecting lipogenesis and fatty acid oxidation in obese Apoe-/- mice through a mechanism involving lower activation of AMPK.

4.
Antioxidants (Basel) ; 11(11)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36358567

RESUMO

Chronic kidney disease (CKD) prevalence is constantly increasing, and dyslipidemia in this disease is characteristic, favoring cardiovascular events. However, the mechanisms of CKD dyslipidemia are not fully understood. The use of curcumin (CUR) in CKD models such as 5/6 nephrectomy (5/6Nx) has shown multiple beneficial effects, so it has been proposed to correct dyslipidemia without side effects. This work aimed to characterize CUR's potential therapeutic effect on dyslipidemia and alterations in lipid metabolism and mitochondrial ß-oxidation in the liver and kidney in 5/6Nx. Male Wistar rats were subjected to 5/6Nx and progressed by 4 weeks; meanwhile, CUR (120 mg/kg) was administered for weeks 5 to 8. Our results showed that CUR reversed the increase in liver and kidney damage and hypertriglyceridemia induced by 5/6Nx. CUR also reversed mitochondrial membrane depolarization and ß-oxidation disorders in the kidney and the increased lipid uptake and the high levels of proteins involved in fatty acid synthesis in the liver and kidney. CUR also decreased lipogenesis and increased mitochondrial biogenesis markers in the liver. Therefore, we concluded that the therapeutic effect of curcumin on 5/6Nx hypertriglyceridemia is associated with the restoration of renal mitochondrial ß-oxidation and the reduction in lipid synthesis and uptake in the kidneys and liver.

5.
Proteomes ; 10(2)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35466238

RESUMO

Visceral leishmaniasis (VL) is a neglected disease caused by Leishmania parasites. Although significant morbidity and mortality in tropical and subtropical regions of the world are associated with VL, the low investment for developing new treatment measures is chronic. Moreover, resistance and treatment failure are increasing for the main medications, but the emergence of resistance phenotypes is poorly understood at the protein level. Here, we analyzed the development of resistance to miltefosine upon experimental selection in a L. infantum strain. Time to miltefosine resistance emergence was ~six months and label-free quantitative mass-spectrometry-based proteomics analyses revealed that this process involves a remodeling of components of the membrane and mitochondrion, with significant increase in oxidative phosphorylation complexes, particularly on complex IV and ATP synthase, accompanied by increased energy metabolism mainly dependent on ß-oxidation of fatty acids. Proteins canonically involved in ROS detoxification did not contribute to the resistant process whereas sterol biosynthesis enzymes could have a role in this development. Furthermore, changes in the abundance of proteins known to be involved in miltefosine resistance such as ABC transporters and phospholipid transport ATPase were detected. Together, our data show a more complete picture of the elements that make up the miltefosine resistance phenotype in L. infantum.

6.
Front Insect Sci ; 2: 885172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38468769

RESUMO

Rhodnius prolixus is an obligatory hematophagous insect, vector of Chagas disease. After blood meal, lipids are absorbed, metabolized, synthesized, and accumulated in the fat body. When necessary, stored lipids are mobilized, transported to other organs, or are oxidized to provide energy. Mitochondrial ß-oxidation is a cyclic conserved pathway, where degradation of long-chain fatty acids occurs to contribute to cellular energetic demands. Three of its reactions are catalyzed by the mitochondrial trifunctional protein (MTP), which is composed by hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunits alpha and beta (HADHA and HADHB, respectively). Here, we investigated the role of HADHA in lipid metabolism and reproduction of Rhodnius prolixus females. The expression of HADHA gene (RhoprHadha) was determined in the organs of starving adult insects. The flight muscle and ovary had higher expression levels when compared to the anterior and posterior midguts or the fat body. RhoprHadha gene expression was upregulated by blood meal in the flight muscle and fat body. We generated insects with RNAi-mediated knockdown of RhoprHadha to address the physiological role of this gene. RhoprHadha deficiency resulted in higher triacylglycerol content and larger lipid droplets in the fat body during starvation. After feeding, lifespan of the knockdown females was not affected, but they exhibited a decrease in oviposition, although hatching was the same in both groups. Silenced females showed lower forced flight capacity than the control ones, and their fat bodies had lower gene expression levels of Brummer lipase (RhoprBmm) and long-chain acyl-CoA synthetase 2 (RhoprAcsl2). Taken together, these findings indicate that HADHA is important to guarantee successful reproduction and efficient mobilization of lipid stores during starvation and flight.

7.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439810

RESUMO

Mitochondria are essential organelles in physiology and kidney diseases, because they produce cellular energy required to perform their function. During mitochondrial metabolism, reactive oxygen species (ROS) are produced. ROS function as secondary messengers, inducing redox-sensitive post-translational modifications (PTM) in proteins and activating or deactivating different cell signaling pathways. However, in kidney diseases, ROS overproduction causes oxidative stress (OS), inducing mitochondrial dysfunction and altering its metabolism and dynamics. The latter processes are closely related to changes in the cell redox-sensitive signaling pathways, causing inflammation and apoptosis cell death. Although mitochondrial metabolism, ROS production, and OS have been studied in kidney diseases, the role of redox signaling pathways in mitochondria has not been addressed. This review focuses on altering the metabolism and dynamics of mitochondria through the dysregulation of redox-sensitive signaling pathways in kidney diseases.


Assuntos
Injúria Renal Aguda/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Apoptose/genética , Ácidos Graxos/metabolismo , Humanos , Rim/metabolismo , Rim/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mitofagia/genética , NADPH Oxidase 1/genética , NADPH Oxidase 1/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação Oxidativa , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
8.
FASEB J ; 35(7): e21712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110637

RESUMO

Palmitic acid (PA) is a saturated fatty acid whose high consumption has been largely associated with the development of different metabolic alterations, such as insulin resistance, metabolic syndrome, and type 2 diabetes. Particularly in the brain, insulin signaling disruption has been linked to cognitive decline and is considered a risk factor for Alzheimer's disease. Cumulative evidence has demonstrated the participation of PA in the molecular cascade underlying cellular insulin resistance in peripheral tissues, but its role in the development of neuronal insulin resistance and the mechanisms involved are not fully understood. It has generally been accepted that the brain does not utilize fatty acids as a primary energy source, but recent evidence shows that neurons possess the machinery for fatty acid ß-oxidation. However, it is still unclear under what conditions neurons use fatty acids as energy substrates and the implications of their oxidative metabolism in modifying insulin-stimulated effects. In the present work, we have found that neurons differentiated from human neuroblastoma MSN exposed to high but nontoxic concentrations of PA generate ATP through mitochondrial metabolism, which is associated with an increase in the cytosolic Ca2+ and diminished insulin signaling in neurons. These findings reveal a novel mechanism by which saturated fatty acids produce Ca2+ entry and insulin resistance that may play a causal role in increasing neuronal vulnerability associated with metabolic diseases.


Assuntos
Cálcio/metabolismo , Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina/fisiologia , Neurônios/efeitos dos fármacos , Ácido Palmítico/farmacologia , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Ácidos Graxos/farmacologia , Humanos , Insulina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Neurônios/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Int J Mol Sci ; 21(18)2020 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32899919

RESUMO

Five-sixths nephrectomy (5/6Nx) model is widely used for studying the mechanisms involved in chronic kidney disease (CKD) progression, a kidney pathology that has increased dramatically in recent years. Mitochondrial impairment is a key mechanism that aggravates CKD progression; however, the information on mitochondrial bioenergetics and redox alterations along a time course in a 5/6Nx model is still limited and in some cases contradictory. Therefore, we performed for the first time a time-course study of mitochondrial alterations by high-resolution respirometry in the 5/6Nx model. Our results show a decrease in mitochondrial ß-oxidation at early times, as well as a permanent impairment in adenosine triphosphate (ATP) production in CI-linked respiration, a permanent oxidative state in mitochondria and decoupling of these organelles. These pathological alterations are linked to the early decrease in complex I and ATP synthase activities and to the further decrease in complex III activity. Therefore, our results may suggest that mitochondrial bioenergetics impairment is an early event in renal damage, whose persistence in time aggravates CKD development in the 5/6Nx model.


Assuntos
Mitocôndrias/metabolismo , Nefrectomia/efeitos adversos , Estresse Oxidativo/fisiologia , Insuficiência Renal Crônica , Animais , Progressão da Doença , Metabolismo Energético , Hemodinâmica/fisiologia , Rim/irrigação sanguínea , Rim/metabolismo , Rim/patologia , Rim/cirurgia , Masculino , Mitocôndrias/patologia , Nefrectomia/métodos , Oxirredução , Consumo de Oxigênio/fisiologia , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/patologia , Ratos , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fatores de Tempo
10.
Appl Biochem Biotechnol ; 192(2): 494-516, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399842

RESUMO

Amycolatopsis sp. ATCC 39116 catabolizes ferulic acid by the non-oxidative deacetylation and ß-oxidation pathways to produce vanillin and vanillic acid, respectively. In submerged culture, vanillin productivity decreased more than 8-fold, when ferulic, p-coumaric, and caffeic acids were employed in pre-cultures of the microorganism in order to activate the ferulic acid catabolic pathways, resulting in a carbon redistribution since vanillic acid and guaiacol productivities increased more than 5-fold compared with control. In contrast, in surface culture, the effects of ferulic and sinapic acids in pre-cultures were totally opposite to those of the submerged culture, directing the carbon distribution into vanillin formation. In surface culture, more than 30% of ferulic acid can be used as carbon source for other metabolic processes, such as ATP regeneration. In this way, the intracellular ATP concentration remained constant during the biotransformation process by surface culture (100 µg ATP/mg protein), demonstrating a high energetic state, which can maintain active the non-oxidative deacetylation pathway. In contrast, in submerged culture, it decreased 3.15-fold at the end of the biotransformation compared with the initial content, showing a low energetic state, while the NAD+/NADH ratio (23.15) increased 1.81-fold. It seems that in submerged culture, low energetic and high oxidative states are the physiological conditions that can redirect the ferulic catabolism into ß-oxidative pathway and/or vanillin oxidation to produce vanillic acid.


Assuntos
Amycolatopsis/metabolismo , Ácidos Cumáricos/metabolismo , Trifosfato de Adenosina/metabolismo , Amycolatopsis/citologia , Amycolatopsis/crescimento & desenvolvimento , Biotecnologia , Biotransformação , Técnicas de Cultura , Metabolismo Energético , Imersão , Espaço Intracelular/metabolismo , Cinética , Oxirredução
11.
Bioorg Chem ; 100: 103935, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32454391

RESUMO

Since cancer cells have different mitochondrial bioenergetic requirements than non-cancerous cells, therapeutic inhibition of its mitochondrial functionality continues to be an important target for anticancer drug discovery. In this study, a series of acylhydroquinones with different acyl-chain length, and their chlorinated derivatives, in the aromatic ring, synthesized by Fries rearrangement under microwave irradiation, were evaluated for their anticancer activity in two leukemia cell lines. Findings from the primary and secondary screening of the 18 acylhydroquinones, tested at 5 µM on acute promyelocytic leukemia HL-60 and acute lymphoblastic leukemia CEM cells lines, identified an acylchlorohydroquinone (12) with a highly selective anti-proliferative effect toward HL-60 cells. This compound induced S-phase arrest in the cell cycle progression of HL-60 cells with insignificant toxicity on leukemic CEM cells and non-cancerous Hs27 cells. In HL-60 leukemic cells, 12 triggered increased mitochondrial NADH oxidation, increased respiration in presence of oligomycin (state 4o), mitochondrial depolarization, and ROS production, suggesting an uncoupling of OXPHOS. This provoked a metabolic adaptation dependent on AMPK/ACC/autophagy axis, having the mitochondrial ß-oxidation a pro-survival role since the combination of 12 and etomoxir, a carnitine palmitoyl-transferase (CPT) inhibitor promoted extensive HL-60 cell death. Finally, 12-induced metabolic stress sensitized to HL-60 cells to cell death by the FDA-approved anti-leukemic drug ABT-199, a BH3 mimetic. Therefore, our results suggest that acylchlorohydroquinone is a promising scaffold in anti-promyelocytic leukemia drug research.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Hidroquinonas/química , Fosforilação Oxidativa/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Hidroquinonas/farmacologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
12.
J Biol Chem ; 294(24): 9342-9357, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040181

RESUMO

Triple-negative breast cancers (TNBCs) lack progesterone and estrogen receptors and do not have amplified human epidermal growth factor receptor 2, the main therapeutic targets for managing breast cancer. TNBCs have an altered metabolism, including an increased Warburg effect and glutamine dependence, making the glutaminase inhibitor CB-839 therapeutically promising for this tumor type. Accordingly, CB-839 is currently in phase I/II clinical trials. However, not all TNBCs respond to CB-839 treatment, and the tumor resistance mechanism is not yet fully understood. Here we classified cell lines as CB-839-sensitive or -resistant according to their growth responses to CB-839. Compared with sensitive cells, resistant cells were less glutaminolytic and, upon CB-839 treatment, exhibited a smaller decrease in ATP content and less mitochondrial fragmentation, an indicator of poor mitochondrial health. Transcriptional analyses revealed that the expression levels of genes linked to lipid metabolism were altered between sensitive and resistant cells and between breast cancer tissues (available from The Cancer Genome Atlas project) with low versus high glutaminase (GLS) gene expression. Of note, CB-839-resistant TNBC cells had increased carnitine palmitoyltransferase 2 (CPT2) protein and CPT1 activity levels. In agreement, CB-839-resistant TNBC cells mobilized more fatty acids into mitochondria for oxidation, which responded to AMP-activated protein kinase and acetyl-CoA carboxylase signaling. Moreover, chemical inhibition of both glutaminase and CPT1 decreased cell proliferation and migration of CB-839-resistant cells compared with single inhibition of each enzyme. We propose that dual targeting of glutaminase and CPT1 activities may have therapeutic relevance for managing CB-839-resistant tumors.


Assuntos
Benzenoacetamidas/farmacologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutaminase/antagonistas & inibidores , Glutamina/metabolismo , Tiadiazóis/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Feminino , Humanos , Oxirredução , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
13.
Nutrition ; 65: 103-112, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31079017

RESUMO

OBJECTIVE: Intermittent fasting (IF) is a nutritional intervention with significant metabolic effects on the liver that are not yet fully understood. The aim of this study was to investigate the effects of IF on body mass, lipid profile, glucose metabolism, liver lipogenesis, ß-oxidation, and inflammation. METHODS: We used cellular and molecular techniques to investigate the effects of IF on 3-mo-old male C57 BL/6 mice that were fed control (10% kcal fat), high-fat (HF; 50% kcal fat), or high-fructose (HFr; 50% kcal fructose) diets for 8 wk. Half of the animals were submitted to IF (1 d fed, 1 d fast) for an additional 4 wk. RESULTS: Although food intake on the fed day did not differ between the groups, mice in the HF and HFr groups showed diminished body mass, total cholesterol, and triacylglycerol levels. Also, plasma adiponectin increased in the HFr group and leptin decreased in the HF mice. Oral glucose tolerance test and insulin were ameliorated by IF, regardless of the diet consumed (HF or HFr), and decreased hepatic lipogenesis and increased ß-oxidation markers, resulting in a reduction of the hepatic steatosis and inflammation. CONCLUSIONS: There were beneficial effects of IF even with the continuity of the obesogenic diet and proinflammatory diet in mice. It is recommended that based on the beneficial effects of IF on glucose and liver metabolism and inflammation that IF be a coadjutant factor in the treatment of hepatic metabolic issues and steatosis.


Assuntos
Dieta da Carga de Carboidratos/métodos , Dieta Hiperlipídica/métodos , Jejum/metabolismo , Fígado Gorduroso/dietoterapia , Frutose/administração & dosagem , Adiponectina/sangue , Animais , Fígado Gorduroso/sangue , Fígado Gorduroso/fisiopatologia , Teste de Tolerância a Glucose , Inflamação , Resistência à Insulina , Lipídeos/sangue , Lipogênese , Fígado/metabolismo , Camundongos
14.
Appl Microbiol Biotechnol ; 103(9): 3753-3760, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30919102

RESUMO

Pseudomonas aeruginosa are ubiquitous γ-proteobacteria capable of producing the biosurfactant rhamnolipids (RL) and the polymer polyhydroxyalkanoate (PHA). RL are glycolipids with high biotechnological potential, whereas PHA is used for the production of biodegradable plastics. It has been proposed that the ß-oxidation pathway provides intermediates for RL biosynthesis, even when using a non-fatty acid carbon source for growth, while an intermediate of de novo fatty acid biosynthesis (FASII) pathway [(R)-3-hydroxyacyl-ACP] is used for PHA biosynthesis. The aim of this work is to study the inter-relationship of the RL and PHA biosynthetic pathways in a culture medium with a non-fatty acid carbon source, focusing on the role of FASII and ß-oxidation in supplying the substrates for the first step in RL and PHA synthesis, carried out by the RhlA and PhaG enzymes, respectively. The PHA synthases (PhaC1 and PhaC2) are only able to use CoA-linked 3-hydroxy acids and the PhaG enzyme catalyzes the conversion of (R)-3-hydroxyacyl-ACP to (R)-3-hydroxyacyl-CoA, the substrate of PhaC1 and PhaC2. RhlA in turn catalyzes the synthesis of the RL precursor 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAA) by the dimerization of two 3-hydroxyalkanoic acid molecules (that have been shown to be also (R)-3-hydroxyacyl-ACP). In this work, we show that RhlA can produce both RL and PHA precursors (presumably CoA-linked HAA), that the blockage of carbon flux through ß-oxidation pathway does not decrease RL titer, and that the enoyl-CoA hydratase RhlY and enoyl-CoA hydratase/isomerase RhlZ produce the main fatty acids precursor of RL using as substrate also a FASII intermediate (presumably (S)-3-hydroxyacyl-CoA).


Assuntos
Ácidos Graxos/metabolismo , Glicolipídeos/biossíntese , Poli-Hidroxialcanoatos/biossíntese , Pseudomonas aeruginosa/metabolismo , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Oxirredução , Pseudomonas aeruginosa/enzimologia
15.
Food Res Int ; 112: 48-55, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131158

RESUMO

The study investigated the effect of extruded sorghum flour (ESF) in a high fat diet (HFD) on biometric measurements and hepatic lipogenesis. Male Wistar rats were fed a normal diet (AIN-93M), HFD, HFD plus ESF replacing 50% cellulose and 100% corn starch (HFDS50), or HFD plus ESF replacing 100% cellulose and 100% corn starch (HFDS100) for eight weeks. ESF reduced the body mass index and liver weight of obese rats. Additionally, ESF reduced hepatic lipogenesis by increasing adiponectin 2 receptor gene expression and gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα), while reducing the gene expression of sterol regulatory element-binding transcription factor 1. Molecular docking analysis revealed the affinity of ESF compounds (luteolinidin, apigeninidin, 5-methoxy-luteolinidin, and 7-methoxy-apigeninidin) with the PPAR-α receptor. Histological analysis confirmed the decreased grade of hepatic steatosis in obese rats. These data indicate the potential of ESF to reduce metabolic risk of hepatic steatosis associated with lipogenesis and obesity.


Assuntos
Ração Animal , Dieta Hiperlipídica , Fígado Gorduroso/prevenção & controle , Farinha , Lipogênese , Fígado/metabolismo , Obesidade/dietoterapia , Sorghum , Animais , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Regulação da Expressão Gênica , Fígado/patologia , Masculino , Simulação de Acoplamento Molecular , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Tamanho do Órgão , PPAR alfa/genética , PPAR alfa/metabolismo , Ratos Wistar , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Tempo , Redução de Peso
16.
Clin Sci (Lond) ; 132(12): 1257-1272, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29773670

RESUMO

Regeneration of ethanol-injured rat gastric mucosa must undergo changes in major metabolic pathways to achieve DNA replication and cell proliferation. These events are highly dependent on glucose utilization and inhibited by vitamin E (VE) (α-tocopherol) administration. Therefore, the present study aimed at assessing lipid metabolism in the gastric mucosa and ethanol-induced gastric damage and the effect of α-tocopherol administration. For this, rates of fatty acid ß-oxidation and lipogenesis were tested in gastric mucosa samples. Through histological analysis, we found loss of the mucosa's superficial epithelium, which became gradually normalized during the recovery period. Proliferation of gastric mucosa occurred with augmented formation of ß-oxidation by-products, diminished synthesis of triacylglycerols (TGs), as well as of phospholipids, and a reduced cytoplasmic NAD/NADH ratio, whereas the mitochondrial redox NAD/NADH ratio was much less affected. In addition, α-tocopherol increased palmitic acid utilization in the gastric mucosa, which was accompanied by the induction of 'mirror image' effects on the cell redox state, reflected in an inhibited cell gastric mucosa proliferation by the vitamin administration. In conclusion, the present study shows, for the first time, the role of lipid metabolism in the adaptive cell gastric mucosa changes that drive proliferation after a chronic insult. Moreover, α-tocopherol increased gastric mucosa utilization of palmitic acid associated with energy production. These events could be associated with its antioxidant properties in co-ordination with regulation of genes and cell pathways, including changes in the cell NAD/NADH redox state.


Assuntos
Etanol/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Oxirredução , Ácido Palmítico/metabolismo , Ratos Wistar , alfa-Tocoferol/administração & dosagem
17.
Protein Eng Des Sel ; 30(3): 225-233, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062645

RESUMO

C: Structures of the C123A variant of the dimeric Leishmania mexicana SCP2-thiolase (type-2) (Lm-thiolase), complexed with acetyl-CoA and acetoacetyl-CoA, respectively, are reported. The catalytic site of thiolase contains two oxyanion holes, OAH1 and OAH2, which are important for catalysis. The two structures reveal for the first time the hydrogen bond interactions of the CoA-thioester oxygen atom of the substrate with the hydrogen bond donors of OAH1 of a CHH-thiolase. The amino acid sequence fingerprints ( xS, EAF, G P) of three catalytic loops identify the active site geometry of the well-studied CNH-thiolases, whereas SCP2-thiolases (type-1, type-2) are classified as CHH-thiolases, having as corresponding fingerprints xS, DCF and G P. In all thiolases, OAH2 is formed by the main chain NH groups of two catalytic loops. In the well-studied CNH-thiolases, OAH1 is formed by a water (of the Wat-Asn(NEAF) dyad) and NE2 (of the GHP-histidine). In the two described liganded Lm-thiolase structures, it is seen that in this CHH-thiolase, OAH1 is formed by NE2 of His338 (HDCF) and His388 (GHP). Analysis of the OAH1 hydrogen bond networks suggests that the GHP-histidine is doubly protonated and positively charged in these complexes, whereas the HDCF histidine is neutral and singly protonated.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Leishmania mexicana/enzimologia , Proteínas de Protozoários/química , Domínio Catalítico , Cristalografia por Raios X , Estrutura Secundária de Proteína
18.
J Physiol ; 595(3): 677-693, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27647415

RESUMO

KEY POINTS: Long-chain acyl-CoA synthetase 6 (ACSL6) mRNA is present in human and rat skeletal muscle, and is modulated by nutritional status: exercise and fasting decrease ACSL6 mRNA, whereas acute lipid ingestion increase its expression. ACSL6 genic inhibition in rat primary myotubes decreased lipid accumulation, as well as activated the higher mitochondrial oxidative capacity programme and fatty acid oxidation through the AMPK/PGC1-α pathway. ACSL6 overexpression in human primary myotubes increased phospholipid species and decreased oxidative metabolism. ABSTRACT: Long-chain acyl-CoA synthetases (ACSL 1 to 6) are key enzymes regulating the partitioning of acyl-CoA species toward different metabolic fates such as lipid synthesis or ß-oxidation. Despite our understanding of ecotopic lipid accumulation in skeletal muscle being associated with metabolic diseases such as obesity and type II diabetes, the role of specific ACSL isoforms in lipid synthesis remains unclear. In the present study, we describe for the first time the presence of ACSL6 mRNA in human skeletal muscle and the role that ACSL6 plays in lipid synthesis in both rodent and human skeletal muscle. ACSL6 mRNA was observed to be up-regulated by acute high-fat meal ingestion in both rodents and humans. In rats, we also demonstrated that fasting and chronic aerobic training negatively modulated the ACSL6 mRNA and other genes of lipid synthesis. Similar results were obtained following ACSL6 knockdown in rat myotubes, which was associated with a decreased accumulation of TAGs and lipid droplets. Under the same knockdown condition, we further demonstrate an increase in fatty acid content, p-AMPK, mitochondrial content, mitochondrial respiratory rates and palmitate oxidation. These results were associated with increased PGC-1α, UCP2 and UCP3 mRNA and decreased reactive oxygen species production. In human myotubes, ACSL6 overexpression reduced palmitate oxidation and PGC-1α mRNA. In conclusion, ACSL6 drives acyl-CoA toward lipid synthesis and its downregulation improves mitochondrial biogenesis, respiratory capacity and lipid oxidation. These outcomes are associated with the activation of the AMPK/PGC1-α pathway.


Assuntos
Coenzima A Ligases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Células Cultivadas , Citrato (si)-Sintase/metabolismo , Coenzima A Ligases/genética , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Feminino , Humanos , Masculino , Obesidade/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/metabolismo , Ratos Wistar
19.
Br J Nutr ; 116(4): 611-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27464460

RESUMO

The aim of this study was to investigate the effects of trans-fatty acids (TFA) on liver and serum TAG regulation in mice fed diets containing different proportions of n-3, n-6 and n-9 unsaturated fatty acids (UFA) from olive (O), maize (C) or rapeseed (R) oils partially substituted or not with TFA (Ot, Ct and Rt, respectively). Male CF1 mice were fed (30 d) one of these diets. The effects of the partial substitution (1 %, w/w) of different UFA with TFA on the activity and expression of hepatic enzymes involved in lipogenesis and fatty acids oxidation were evaluated, as well as their transcription factor expressions. Some of the mechanisms involved in the serum TAG regulation, hepatic VLDL rich in TAG (VLDL-TAG) secretion rate and lipoprotein lipase (LPL) activity were assessed. In liver, TFA induced an increase in TAG content in the Ot and Rt groups, and this effect was associated with an imbalance between lipogenesis and ß-oxidation. In the Ot group, exacerbated lipogenesis may be one of the mechanisms responsible for the liver steatosis induced by TFA, whereas in Rt it has been related to a decreased ß-oxidation, compared with their respective controls. The enhanced hepatic VLDL-TAG secretion in the Ot and Rt groups was compensated with a differential removal of TAG by LPL enzyme in extrahepatic tissues, leading to unchanged serum TAG levels. In brief, the effects of low levels of TFA on liver and serum TAG regulation in mice depend on the dietary proportions of n-3, n-6 and n-9 UFA.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Plantas/metabolismo , Ácidos Graxos trans/farmacologia , Triglicerídeos/metabolismo , Animais , Óleo de Milho/química , Óleo de Milho/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/administração & dosagem , Ácidos Graxos Ômega-6/metabolismo , Fígado Gorduroso/metabolismo , Leucotrienos/metabolismo , Lipogênese , Lipase Lipoproteica/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Azeite de Oliva/química , Azeite de Oliva/metabolismo , Oxirredução , Óleos de Plantas/química , Óleo de Brassica napus , Triglicerídeos/biossíntese
20.
Epigenetics ; 11(5): 321-34, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27088456

RESUMO

Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1-200 µM range, respectively, with a maximal differential response at the 100 µM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to ß-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts.


Assuntos
Ácido Araquidônico/metabolismo , Aterosclerose/genética , Metilação de DNA/efeitos dos fármacos , Ácido Oleico/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Aterosclerose/metabolismo , Aterosclerose/patologia , Epigênese Genética/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Genoma Humano , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Ácido Oleico/administração & dosagem , PPAR alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA