Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 807
Filtrar
1.
Anal Chim Acta ; 1316: 342836, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969426

RESUMO

BACKGROUND: As promising biomarkers of diabetes, α-glucosidase (α-Glu) and ß-glucosidase (ß-Glu) play a crucial role in the diagnosis and management of diseases. However, there is a scarcity of techniques available for simultaneously and sensitively detecting both enzymes. What's more, most of the approaches for detecting α-Glu and ß-Glu rely on a single-mode readout, which can be affected by multiple factors leading to inaccurate results. Hence, the simultaneous detection of the activity levels of both enzymes in a single sample utilizing multiple-readout sensing approaches is highly attractive. RESULTS: In this work, we constructed a facile sensing platform for the simultaneous determination of α-Glu and ß-Glu by utilizing a luminescent covalent organic framework (COF) as a fluorescent indicator. The enzymatic hydrolysis product common to both enzymes, p-nitrophenol (PNP), was found to affect the fluorometric signal through an inner filter effect on COF, enhance the colorimetric response by intensifying the absorption peak at 400 nm, and induce changes in RGB values when analyzed using a smartphone-based color recognition application. By combining fluorometric/colorimetric measurements with smartphone-assisted RGB mode, we achieved sensitive and accurate quantification of α-Glu and ß-Glu. The limits of detection for α-Glu were determined to be 0.8, 1.22, and 1.85 U/L, respectively. Similarly, the limits of detection for ß-Glu were 0.16, 0.42, and 0.53 U/L, respectively. SIGNIFICANCE: Application of the proposed sensing platform to clinical serum samples revealed significant differences in the two enzymes between healthy people and diabetic patients. Additionally, the proposed sensing method was successfully applied for the screening of α-Glu inhibitors and ß-Glu inhibitors, demonstrating its viability and prospective applications in the clinical management of diabetes as well as the discovery of antidiabetic medications.


Assuntos
Inibidores de Glicosídeo Hidrolases , Estruturas Metalorgânicas , alfa-Glucosidases , beta-Glucosidase , Estruturas Metalorgânicas/química , Humanos , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , alfa-Glucosidases/metabolismo , alfa-Glucosidases/sangue , Colorimetria/métodos , Limite de Detecção , Nitrofenóis/metabolismo , Nitrofenóis/química , Nitrofenóis/análise , Avaliação Pré-Clínica de Medicamentos , Corantes Fluorescentes/química
2.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928288

RESUMO

Abscisic acid (ABA) plays a crucial role in plant defense mechanisms under adverse environmental conditions, but its metabolism and perception in response to heavy metals are largely unknown. In Pisum sativum exposed to CdCl2, an accumulation of free ABA was detected in leaves at different developmental stages (A, youngest, unexpanded; B1, youngest, fully expanded; B2, mature; C, old), with the highest content found in A and B1 leaves. In turn, the content of ABA conjugates, which was highest in B2 and C leaves under control conditions, increased only in A leaves and decreased in leaves of later developmental stages after Cd treatment. Based on the expression of PsNCED2, PsNCED3 (9-cis-epoxycarotenoid dioxygenase), PsAO3 (aldehyde oxidase) and PsABAUGT1 (ABA-UDP-glucosyltransferase), and the activity of PsAOγ, B2 and C leaves were found to be the main sites of Cd-induced de novo synthesis of ABA from carotenoids and ABA conjugation with glucose. In turn, ß-glucosidase activity and the expression of genes encoding ABA receptors (PsPYL2, PsPYL4, PsPYL8, PsPYL9) suggest that in A and B1 leaves, Cd-induced release of ABA from inactive ABA-glucosyl esters and enhanced ABA perception comes to the forefront when dealing with Cd toxicity. The distinct role of leaves at different developmental stages in defense against the harmful effects of Cd is discussed.


Assuntos
Ácido Abscísico , Cádmio , Regulação da Expressão Gênica de Plantas , Pisum sativum , Folhas de Planta , Proteínas de Plantas , Ácido Abscísico/metabolismo , Pisum sativum/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Cádmio/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Dioxigenases/metabolismo , Dioxigenases/genética , beta-Glucosidase/metabolismo , beta-Glucosidase/genética
3.
Curr Res Food Sci ; 8: 100777, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38840809

RESUMO

The novel ß-glucosidase gene (pgbgl1) of glycoside hydrolase (GH) family 1 from the psychrotrophic bacterium Psychrobacillus glaciei sp. PB01 was successfully expressed in Escherichia coli BL21 (DE3). The deduced PgBgl1 contained 447 amino acid residues with a calculated molecular mass of 51.4 kDa. PgBgl1 showed its maximum activity at pH 7.0 and 40 °C, and still retained over 10% activity at 0 °C, suggesting that the recombinant PgBgl1 is a cold-adapted enzyme. The substrate specificity, Km, Vmax, and Kcat/Km for the p-Nitrophenyl-ß-D-glucopyranoside (pNPG) as the substrate were 1063.89 U/mg, 0.36 mM, 1208.31 U/mg and 3871.92/s, respectively. Furthermore, PgBgl1 demonstrated remarkable stimulation of monosaccharides such as glucose, xylose, and galactose, as well as NaCl. PgBgl1 also demonstrated a high capacity to convert the primary soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their respective aglycones. Overall, PgBgl1 exhibited high catalytic activity towards aryl glycosides, suggesting promising application prospects in the food, animal feed, and pharmaceutical industries.

4.
Int J Biol Macromol ; 273(Pt 1): 132929, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866279

RESUMO

In order to more efficiently utilize the abundant cellulose resources in nature, increase the utilization rate of cellulose in aquaculture, implement precise feeding and save aquaculture costs, we have conducted research on cellulase genes related to the spotted knifejaw (Oplegnathus punctatus). Cellulose, as the most abundant renewable resource, is a cornerstone in the intricate ecological balance of diverse ecosystems. While herbivorous fish are recognized for their utilization of proteins, sugars, and fats, the extent of cellulose utilization by carnivorous and omnivorous fish remains an enigma. Here, through field sampling and behavioural observations, O. punctatus' omnivorous diet has been demonstrated (stomach contents contain approximately several species of algae in the Bacillariophyta (1.12 %), Streptomyces (0.55 %), Chlorophyta (0.35 %), Rhodophyta (0.16 %), and Euglenophyta (0.19 %) phylum). Additionally, the high cellulase activity in the intestine of O. punctatus has been detected first discovery (enzyme activity up to 4800.15 U/g), indicating its ability to digest cellulose. By employing whole-genome scanning and high-throughput sequencing, a single cellulase gene (ß-glucosidase) within the genome of O. punctatus, suggesting the absence of a complete cellulose digestive system. However, microbiological analysis revealed the three crucial role of microorganisms, including Actinobacteria (25.80 %), Bacteroidetes (18.93 %), and Firmicutes phylum (0.82 %), were found to play a crucial role in the decomposition of plant cell walls, thereby facilitating plant material digestion to help the host to complete the process of cellulose digestion. Expression patterns and proteomic analysis of the ß-glucosidase were notably high in the gonads. In situ hybridization confirmed the expression of the ß-glucosidase gene in the intestinal contents and gonads, highlighting its role in supplying energy of gonads. These discoveries shed light on the dietary habits of O. punctatus and its cellulose utilization, offering insights that can inform the development of customized feeding strategies to enhance aquaculture sustainability and minimize resource expenditure.


Assuntos
Peixes , beta-Glucosidase , Animais , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Peixes/genética , Filogenia , Celulose/metabolismo , Carnivoridade
5.
Artigo em Inglês | MEDLINE | ID: mdl-38767616

RESUMO

A Gram-stain-positive actinomycete, designated REN17T, was isolated from fermented grains of Baijiu collected from Sichuan, PR China. It exhibited branched substrate mycelia and a sparse aerial mycelium. The optimal growth conditions for REN17T were determined to be 28 °C and pH 7, with a NaCl concentration of 0 % (w/v). ll-Diaminopimelic acid was the diagnostic amino acid of the cell-wall peptidoglycan and the polar lipids were composed of phosphatidylethanolamine, phosphatidylinositol, an unidentified phospholipid, two unidentified lipids and four unidentified glycolipids. The predominant menaquinone was MK-9 (H2), MK-9 (H4), MK-9 (H6) and MK-9 (H8). The major fatty acids were iso-C16 : 0. The 16S rRNA sequence of REN17T was most closely related to those of Streptomyces apricus SUN 51T (99.8 %), Streptomyces liliiviolaceus BH-SS-21T (99.6 %) and Streptomyces umbirnus JCM 4521T (98.9 %). The digital DNA-DNA hybridization, average nucleotide identity and average amino acid identify values between REN17T and its closest replated strain, of S. apricus SUN 51T, were 35.9, 88.9 and 87.3 %, respectively. Therefore, REN17T represents a novel species within the genus Streptomyces, for which the name Streptomyces beigongshangae sp. nov. is proposed. The type strain is REN17T (=GDMCC 4.193T=JCM 34712T). While exploring the function of the strain, REN17T was found to possess the ability to transform major ginsenosides of Panax notoginseng (Burk.) F.H. Chen (Araliaceae) into minor ginsenoside through HPLC separation, which was due to the presence of ß-glucosidase. The recombinant ß-glucosidase was constructed and purified, which could produce minor ginsenosides of Rg3 and C-K. Finally, the enzymatic properties were characterized.


Assuntos
Técnicas de Tipagem Bacteriana , DNA Bacteriano , Ácidos Graxos , Fermentação , Ginsenosídeos , Hibridização de Ácido Nucleico , Panax notoginseng , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Streptomyces , Vitamina K 2 , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Streptomyces/isolamento & purificação , Streptomyces/genética , Streptomyces/classificação , Vitamina K 2/análogos & derivados , DNA Bacteriano/genética , China , Panax notoginseng/microbiologia , Ginsenosídeos/metabolismo , Peptidoglicano , Grão Comestível/microbiologia , Ácido Diaminopimélico , Fosfolipídeos/química , Composição de Bases
6.
Plants (Basel) ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611495

RESUMO

Hamelia patens (Rubiaceae), known as firebush, is a source of bioactive monoterpenoid oxindole alkaloids (MOAs) derived from monoterpenoid indole alkaloids (MIAs). With the aim of understanding the regulation of the biosynthesis of these specialized metabolites, micropropagated plants were elicited with jasmonic acid (JA) and salicylic acid (SA). The MOA production and MIA biosynthetic-related gene expression were evaluated over time. The production of MOAs was increased compared to the control up to 2-fold (41.3 mg g DW-1) at 72 h in JA-elicited plants and 2.5-fold (42.4 mg g DW-1) at 120 h in plants elicited with SA. The increment concurs with the increase in the expression levels of the genes HpaLAMT, HpaTDC, HpaSTR, HpaNPF2.9, HpaTHAS1, and HpaTHAS2. Interestingly, it was found that HpaSGD was downregulated in both treatments after 24 h but in the SA treatment at 120 h only was upregulated to 8-fold compared to the control. In this work, we present the results of MOA production in H. patens and discuss how JA and SA might be regulating the central biosynthetic steps that involve HpaSGD and HpaTHAS genes.

7.
Heliyon ; 10(7): e28667, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38571589

RESUMO

ß-glucosidase hydrolyses the glycosidic bonds in cellobiose and cello-oligosaccharides, a critical step in the saccharification for biofuel production. Hence, the aim of this study was to gain insights into the biochemical and structural properties of a ß-glucosidase from Beauveria bassiana, an entomopathogenic fungus. The ß-glucosidase was purified to homogeneity using salt precipitation, ultrafiltration, and chromatographic techniques, attaining a specific activity of 496 U/mg. The molecular mass of the enzyme was then estimated via SDS-PAGE to be 116 kDa, while its activity pattern was confirmed by zymography using 4-methylumbelliferyl-ß-d-glucopyranoside. Furthermore, the pH optima and temperature of the enzyme were found to be pH 5.0 and 60 °C respectively; its activity was significantly enhanced by Mg2+ and Na+ and was found to be relatively moderate in the presence of ethanol and dichloromethane. Molecular docking of the modelled B. bassiana ß-glucosidase structure with the substrates, viz., 4-nitrophenyl ß-d-glucopyranoside and cellobiose, revealed the binding affinity energies of -7.2 and -6.2 (kcal mol-1), respectively. Furthermore, the computational study predicted Lys-657, Asp-658, and Arg-1000 as the core amino acid residues in the catalytic site of the enzyme. This is the first investigation into a purified ß-glucosidase from B. bassiana, providing valuable insights into the functional properties of carbohydrases from entomopathogenic fungal endophytes.

8.
J Fungi (Basel) ; 10(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667914

RESUMO

This study aims to utilize the microbial resources found within Laphet-so, a traditional fermented tea in Myanmar. A total of 18 isolates of thermotolerant yeasts were obtained from eight samples of Laphet-so collected from southern Shan state, Myanmar. All isolates demonstrated the tannin tolerance, and six isolates were resistant to 5% (w/v) tannin concentration. All 18 isolates were capable of carboxy-methyl cellulose (CMC) degrading, but only the isolate DK showed ethanol production at 45 °C noticed by gas formation. This ethanol producing yeast was identified to be Cyberlindnera rhodanensis based on the sequence analysis of the D1/D2 domain on rRNA gene. C. rhodanensis DK produced 1.70 ± 0.01 U of thermostable extracellular ß-glucosidase when cultured at 37 °C for 24 h using 0.5% (w/v) CMC as a carbon source. The best two carbon sources for extracellular ß-glucosidase production were found to be either xylose or xylan, with ß-glucosidase activity of 3.07-3.08 U/mL when the yeast was cultivated in the yeast malt extract (YM) broth containing either 1% (w/v) xylose or xylan as a sole carbon source at 37 °C for 48 h. The optimal medium compositions for enzyme production predicted by Plackett-Burman design and central composite design (CCD) was composed of yeast extract 5.83 g/L, peptone 10.81 g/L and xylose 20.20 g/L, resulting in a production of 7.96 U/mL, while the medium composed (g/L) of yeast extract 5.79, peptone 13.68 and xylan 20.16 gave 9.45 ± 0.03 U/mL for 48 h cultivation at 37 °C. Crude ß-glucosidase exhibited a remarkable stability of 100%, 88% and 75% stable for 3 h at 35, 45 and 55 °C, respectively.

9.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474529

RESUMO

As a crucial enzyme for cellulose degradation, ß-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family ß-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic ß-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.


Assuntos
Glucose , Fontes Termais , Glucose/metabolismo , beta-Glucosidase/metabolismo , Escherichia coli/metabolismo , Temperatura , Concentração de Íons de Hidrogênio , Estabilidade Enzimática , Especificidade por Substrato
10.
Microorganisms ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38543584

RESUMO

A putative ß-glucosidase gene, BglAc, was amplified from Acidilobus sp. through metagenome database sampling from a hot spring in Yellowstone National Park. BglAc is composed of 485 amino acid residues and bioinformatics analysis showed that it belongs to the GH1 family of ß-glucosidases. The gene was successfully expressed in Escherichia coli with a molecular weight of approximately 55.3 kDa. The purified recombinant enzyme showed the maximum activity using p-nitrophenyl-ß-D-glucopyranoside (pNPG) as the substrate at optimal pH 5.0 and 100 °C. BglAc exhibited extraordinary thermostability, and its half-life at 90 °C was 6 h. The specific activity, Km, Vmax, and Kcat/Km of BglAc toward pNPG were 357.62 U mg-1, 3.41 mM, 474.0 µmol min-1·mg-1, and 122.7 s-1mM-1. BglAc exhibited the characteristic of glucose tolerance, and the inhibition constant Ki was 180.0 mM. Furthermore, a significant ethanol tolerance was observed, retaining 96% relative activity at 10% ethanol, and even 78% at 20% ethanol, suggesting BglAc as a promising enzyme for cellulose saccharification. BglAc also had a strong ability to convert the major soybean isoflavone glycosides (daidzin, genistin, and glycitin) into their corresponding aglycones. Overall, BglAc was actually a new ß-glucosidase with excellent thermostability, ethanol tolerance, and glycoside hydrolysis ability, indicating its wide prospects for applications in the food industry, animal feed, and lignocellulosic biomass degradation.

11.
Bioprocess Biosyst Eng ; 47(4): 567-582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470501

RESUMO

The present study reports a highly thermostable ß-glucosidase (GH3) from Rasamsonia emersonii that was heterologously expressed in Pichia pastoris. Extracellular ß-glucosidase was purified to homogeneity using single step affinity chromatography with molecular weight of ~ 110 kDa. Intriguingly, the purified enzyme displayed high tolerance to inhibitors mainly acetic acid, formic acid, ferulic acid, vanillin and 5-hydroxymethyl furfural at concentrations exceeding those present in acid steam pretreated rice straw slurry used for hydrolysis and subsequent fermentation in 2G ethanol plants. Characteristics of purified ß-glucosidase revealed the optimal activity at 80 °C, pH 5.0 and displayed high thermostability over broad range of temperature 50-70 °C with maximum half-life of ~ 60 h at 50 °C, pH 5.0. The putative transglycosylation activity of ß-glucosidase was appreciably enhanced in the presence of methanol as an acceptor. Using the transglycosylation ability of ß-glucosidase, the generated low cost mixed glucose disaccharides resulted in the increased induction of R. emersonii cellulase under submerged fermentation. Scaling up the recombinant protein production at fermenter level using temporal feeding approach resulted in maximal ß-glucosidase titres of 134,660 units/L. Furthermore, a developed custom made enzyme cocktail consisting of cellulase from R. emersonii mutant M36 supplemented with recombinant ß-glucosidase resulted in significantly enhanced hydrolysis of pretreated rice straw slurry from IOCL industries (India). Our results suggest multi-faceted ß-glucosidase from R. emersonii can overcome obstacles mainly high cost associated enzyme production, inhibitors that impair the sugar yields and thermal inactivation of enzyme.


Assuntos
Eurotiales , beta-Glucosidase , Hidrólise , beta-Glucosidase/química , Biomassa
12.
Arch Microbiol ; 206(4): 174, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38493436

RESUMO

The present study focuses on investigating 60 strains of yeast isolated from the natural fermentation broth of Vitis labruscana Baily × Vitis vinifera L. These strains underwent screening using lysine culture medium and esculin culture medium, resulting in the identification of 27 local non-Saccharomyces yeast strains exhibiting high ß-glucosidase production. Subsequent analysis of their fermentation characteristics led to the selection of four superior strains (Z-6, Z-11, Z-25, and Z-58) with excellent ß-glucosidase production and fermentation performance. Notably, these selected strains displayed a dark coloration on esculin medium and exhibited robust gas production during Duchenne tubules' fermentation test. Furthermore, all four non-Saccharomyces yeast strains demonstrated normal growth under specific conditions including SO2 mass concentration ranging from 0.1 to 0.3 g/L, temperature between 25 and 30 °C, glucose mass concentration ranging from 200 to 400 g/L, and ethanol concentration at approximately 4%. Molecular biology identification confirmed that all selected strains belonged to Pichia kudriavzevii species which holds great potential for wine production.


Assuntos
Vitis , Vinho , Saccharomyces cerevisiae/metabolismo , Fermentação , beta-Glucosidase/metabolismo , Esculina/análise , Leveduras/metabolismo , Vinho/análise , Pichia/metabolismo
13.
Biochem Biophys Res Commun ; 700: 149608, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306932

RESUMO

ß-glucosidases (Bgls) are glycosyl hydrolases that catalyze the conversion of cellobiose or glucosyl-polysaccharide into glucose. Bgls are widely used in industry to produce bioethanol, wine and juice, and feed. Tris (tris(hydroxymethyl)aminomethane) is an organic compound that can inhibit the hydrolase activity of some Bgls, but the inhibition state and selectivity have not been fully elucidated. Here, three crystal structures of Thermoanaerobacterium saccharolyticum Bgl complexed with the Tris molecule were determined at 1.55-1.95 Å. The configuration of Tris binding to TsaBgl remained consistent across three crystal structures, and the amino acids interacting with the Tris molecule were conserved across Bgl enzymes. The positions O1 and O3 atoms of Tris exhibit the same binding moiety as the hydroxyl group of the glucose molecule. Tris molecules are stably positioned at the glycone site and coordinate with surrounding water molecules. The Tris-binding configuration of TsaBgl is similar to that of HjeBgl, HgaBgl, ManBgl, and KflBgl, but the arrangement of the water molecule coordinating Tris at the aglycone site differs. Meanwhile, both the arrangement of Tris and the water molecules in ubBgl, NkoBgl, and SfrBgl differ from those in TsaBgl. The binding configuration and affinity of the Tris molecule for Bgl may be affected by the residues on the aglycone and gatekeeper regions. This result will extend our knowledge of the inhibitory effect of Tris molecules on TsaBgl.


Assuntos
Celobiose , beta-Glucosidase , beta-Glucosidase/metabolismo , Celobiose/metabolismo , Glucose/metabolismo , Catálise , Água
14.
Micromachines (Basel) ; 15(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399016

RESUMO

Microfluidic devices have attracted much attention in the current day owing to the unique advantages they provide. However, their application for industrial use is limited due to manufacturing limitations and high cost. Moreover, the scaling-up process of the microreactor has proven to be difficult. Three-dimensional (3D) printing technology is a promising solution for the above obstacles due to its ability to fabricate complex structures quickly and at a relatively low cost. Hence, combining the advantages of the microscale with 3D printing technology could enhance the applicability of microfluidic devices in the industrial sector. In the present work, a 3D-printed single-channel immobilized enzyme microreactor with a volume capacity of 30 µL was designed and created in one step via the fused deposition modeling (FDM) printing technique, using polylactic acid (PLA) as the printing material. The microreactor underwent surface modification with chitosan, and ß-glucosidase from Thermotoga maritima was covalently immobilized. The immobilized biocatalyst retained almost 100% of its initial activity after incubation at different temperatures, while it could be effectively reused for up to 10 successful reaction cycles. Moreover, a multi-channel parallel microreactor incorporating 36 channels was developed, resulting in a significant increase in enzymatic productivity.

15.
Front Bioeng Biotechnol ; 12: 1334695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333082

RESUMO

Introduction: ß-glucosidase is one class of pivotal glycosylhydrolase enzyme that can cleavage glucosidic bonds and transfer glycosyl group between the oxygen nucleophiles. Lactobacillus is the most abundant bacteria in the human gut. Identification and characterization of new ß-glucosidases from Lactobacillus are meaningful for food or drug industry. Method: Herein, an acid-adapted ß-glucosidase (LpBgla) was cloned and characterized from Lactobacillus paracasei. And the insight acid-adapted mechanism of LpBgla was investigated using molecular dynamics simulations. Results and Discussion: The recombinant LpBgla exhibited maximal activity at temperature of 30°C and pH 5.5, and the enzymatic activity was inhibited by Cu2+, Mn2+, Zn2+, Fe2+, Fe3+ and EDTA. The LpBgla showed a more stable structure, wider substrate-binding pocket and channel aisle, more hydrogen bonds and stronger molecular interaction with the substrate at pH 5.5 than pH 7.5. Five residues including Asp45, Leu60, Arg120, Lys153 and Arg164 might play a critical role in the acid-adapted mechanism of LpBgla. Moreover, LpBgla showed a broad substrate specificity and potential application in the bioconversion of glycosides, especially towards the arbutin. Our study greatly benefits for the development novel ß-glucosidases from Lactobacillus, and for the biosynthesis of aglycones.

16.
Insects ; 15(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38392509

RESUMO

The advancement of nanotechnology poses a real risk of insect exposure to nanoparticles (NPs) that can enter the digestive system through contaminated food or nanopesticides. This study examines whether the exposure of model insect species-Acheta domesticus-to increasing graphene oxide (GO) and silver nanoparticle (AgNP) concentrations (2, 20, and 200 ppm and 4, 40, and 400 ppm, respectively) could change its digestive functions: enzymes' activities, food consumption, and assimilation. We noticed more pronounced alterations following exposure to AgNPs than to GO. They included increased activity of α-amylase, α-glucosidase, and lipase but inhibited protease activity. Prolonged exposure to higher concentrations of AgNPs resulted in a significantly decreased food consumption and changed assimilation compared with the control in adult crickets. A increase in body weight was observed in the insects from the Ag4 group and a decrease in body weight or no effects were observed in crickets from the Ag40 and Ag400 groups (i.e., 4, 40, or 400 ppm of AgNPs, respectively), suggesting that even a moderate disturbance in nutrient and energy availability may affect the body weight of an organism and its overall condition. This study underscores the intricate interplay between NPs and digestive enzymes, emphasizing the need for further investigation to comprehend the underlying mechanisms and consequences of these interactions.

17.
Food Microbiol ; 119: 104458, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225057

RESUMO

In this study, we conducted a comprehensive investigation into a GH3 family ß-glucosidase (BGL) from the wild-type strain of Oenococcus oeni and its mutated counterpart from the acid-tolerant mutant strain. Our analysis revealed the mutant BGL's remarkable capacity to adapt to wine-related stress conditions, including heightened tolerance to low pH, elevated ethanol concentrations, and metal ions. Additionally, the mutant BGL exhibited superior hydrolytic activity towards various substrates. Through de novo modeling, we identified specific amino acid mutations responsible for its resilience to low pH and high ethanol environments. In simulated wine conditions, the mutant BGL outperformed both wild-type and commercial BGLs, efficiently releasing terpene and phenolic aglycones from glycosides in wine grapes. These findings not only expand our understanding of O. oeni BGLs but also highlight their potential in enhancing wine production. The mutant BGL's enhanced adaptation to wine stress conditions opens promising avenue for improving wine quality and flavor.


Assuntos
Oenococcus , Vinho , Vinho/análise , beta-Glucosidase/genética , beta-Glucosidase/metabolismo , Odorantes/análise , Etanol/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Fermentação
18.
AMB Express ; 14(1): 4, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38180602

RESUMO

Classical fungal mutant strains obtained by mutagenesis have helped to elucidate fundamental metabolic pathways in the past. In the filamentous fungus Neurospora crassa, the gluc-1 strain was isolated long ago and characterized by its low level of ß-glucosidase activity, which is essential for the degradation of cellulose, the most abundant biopolymer on Earth and the main polymeric component of the plant cell wall. Based on genomic resequencing, we hypothesized that the causative mutation resides in the ß-glucosidase gene gh3-3 (bgl6, NCU08755). In this work, growth patterns, enzymatic activities and sugar utilization rates were analyzed in several mutant and overexpression strains related to gluc-1 and gh3-3. In addition, different mutants affected in the degradation and transport of cellobiose were analyzed. While overexpression of gh3-3 led to the recovery of ß-glucosidase activity in the gluc-1 mutant, as well as normal utilization of cellobiose, the full gene deletion strain Δgh3-3 was found to behave differently than gluc-1 with lower secreted ß-glucosidase activity, indicating a dominant role of the amino acid substitution in the point mutated gh3-3 gene of gluc-1. Our results furthermore confirm that GH3-3 is the major extracellular ß-glucosidase in N. crassa and demonstrate that the two cellodextrin transporters CDT-1 and CDT-2 are essential for growth on cellobiose when the three main N. crassa ß-glucosidases are absent. Overall, these findings provide valuable insight into the mechanisms of cellulose utilization in filamentous fungi, being an essential step in the efficient production of biorefinable sugars from agricultural and forestry plant biomass.

19.
Int J Biol Macromol ; 256(Pt 2): 127915, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939774

RESUMO

ß-Glucosidase exists in all areas of living organisms, and microbial ß-glucosidase has become the main source of its production because of its unique physicochemical properties and the advantages of high-yield production by fermentation. With the rise of the green circular economy, the production of enzymes through the fermentation of waste as the substrate has become a popular trend. Lignocellulosic biomass is an easily accessible and sustainable feedstock that exists in nature, and the production of biofuels from lignocellulosic biomass requires the involvement of ß-glucosidase. This review proposes ways to improve ß-glucosidase yield and catalytic efficiency. Optimization of growth conditions and purification strategies of enzymes can increase enzyme yield, and enzyme immobilization, genetic engineering, protein engineering, and whole-cell catalysis provide solutions to enhance the catalytic efficiency and activity of ß-glucosidase. Besides, the diversified industrial applications, challenges and prospects of ß-glucosidase are also described.


Assuntos
Lignina , beta-Glucosidase , beta-Glucosidase/metabolismo , Lignina/química , Fermentação , Engenharia Genética , Catálise , Biomassa , Biocombustíveis
20.
Environ Res ; 244: 117676, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37996002

RESUMO

The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality ß-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.


Assuntos
Glucosídeos , Metagenoma , Estilbenos , beta-Glucosidase , Resveratrol , beta-Glucosidase/genética , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Temperatura , Metais , Clonagem Molecular , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...