Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.936
Filtrar
1.
EFSA J ; 22(7): e8846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39005714

RESUMO

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of the alpha-amylase (Ronozyme® HiStarch CT/L) produced with a genetically modified strain of Bacillus licheniformis (DSM 34315) as a zootechnical feed additive for chickens for fattening, turkeys for fattening and minor growing poultry species. The additive is available in two forms, a coated thermotolerant granulate formulation and a liquid formulation. The production strain and its DNA were not detected in an intermediate concentrated product representative of the final formulations. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the final product did not trigger safety concerns with regard to the genetic modification. The Panel concluded that Ronozyme® HiStarch CT/L is safe for chickens for fattening, turkeys for fattening and minor growing poultry species at the recommended inclusion level of 80 KNU/kg complete feed. The use of Ronozyme® HiStarch CT/L in animal nutrition under the proposed conditions of use is safe for the consumers and the environment. The additive in any form was shown to be non-irritant to the skin and the solid form was shown to be non-irritant to the eyes. No conclusions could be drawn on the potential of the liquid form to be irritant to the eyes or on the potential of both forms of the additive to be dermal sensitisers due to lack of data. Owing to the proteinaceous nature of the active substance, the additive in either form was considered to be a respiratory sensitiser and any exposure by inhalation is considered a risk. In the absence of data, the Panel was not in the position to conclude on the efficacy of Ronozyme® HiStarch CT/L for chickens for fattening, turkeys for fattening and minor growing poultry species.

2.
Res Pharm Sci ; 19(1): 13-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39006980

RESUMO

Background and purpose: Diabetes mellitus is a persistent hyperglycemic condition. Thai cuisine and medicine incorporate spices: nutmeg, mace, clove buds, cardamom, cinnamon, and coriander. The in vitro impacts of these spices on anti-diabetic, antioxidant, anti-inflammatory, and total phenolic and flavonoid content were assessed. Experimental approach: Alpha-amylase and alpha-glucosidase inhibition assays were conducted. Antioxidant potential was measured through DPPH and ABTS assays. Anti-inflammatory activity was determined by inhibiting nitric oxide generation in RAW 264.7 cells. Total phenolic content was quantified using the Folin Ciocalteu method, while total flavonoid content was estimated via the aluminum chloride colorimetric method. Findings/Results: Ethanolic and aqueous extracts of a blend of spices (Siam cardamom, nutmeg, mace, and clove buds), denoted as 4-GlurE and 4-GlurA, displayed concentration-dependent inhibition of alpha-glucosidase, with IC50 values of 0.373 and 0.435 mg/mL, respectively. 4-GlurE and 4-GlurA exhibited antioxidant activity, by ABTS·+ radical and DPPH scavenging capabilities. 4-GlurE demonstrated anti-inflammatory potential by reducing nitric oxide generation (IC50: 43.95 ± 2.47 µg/mL). 4-GlurE and 4-GlurA possessed total phenolic content (TPC) of 122.47 ± 1.12 and 148.72 ± 0.14 mg GAE/g, respectively. 4-GlurE exhibited a higher total flavonoid content (TFC) compared to the aqueous extract (340.33 ± 4.77 and 94.17 ± 3.36 mg QE/g). Cinnamon and clove aqueous extracts were more potent than acarbose in alpha-glucosidase inhibition with the highest antioxidant activity. Polyphenol levels (TPC and TFC) exhibited strong correlations with antioxidant capacity. Conclusions and implications: Findings are consistent with the traditional use of 4-Glur, with cinnamon, for diabetes prevention and treatment.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38992276

RESUMO

Starch degradation in malted barley produces yeast-fermentable sugars. In this study, we compared the amylolytic enzymes and composition of the malt starch hydrolysates of two barley cultivars, Hokudai 1 (the first cultivar established in Japan) and Kitanohoshi (the currently used cultivar for beer production). Hokudai 1 malt contained lower activity of amylolytic enzymes than Kitanohoshi malt, although these cultivars contained α-amylase AMY2 and ß-amylase Bmy1 as the predominant enzymes. Malt starch hydrolysates of Hokudai 1 contained more limit dextrin and less yeast-fermentable sugars than that of Kitanohoshi. In mixed malt saccharification, a high Hokudai 1 malt ratio increased the limit dextrin levels and decreased the maltotriose and maltose levels. Even though Kitanohoshi malt contained more amylolytic enzymes than Hokudai 1 malt, addition of Kitanohoshi extract containing the amylolytic enzymes did not enhance malt starch degradation of Hokudai 1. Hokudai 1 malt starch was less degradable than Kitanohoshi malt starch.

4.
Nat Prod Res ; : 1-8, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962963

RESUMO

For the first time, phytochemical constituents of the leaves of Heptapleurum ellipticum were investigated. One rare new 2,28-bidesmosidic lupane-type saponin, named heptaellipside A (1), along with four other lupane-type analogs (2-5) were purified by combining differently chromatographic methods. All of the separated compounds (1-5) were communicated for the first time from H. ellipticum. The structures of them were definitely illustrated following extensive and comprehensive UV/VIS, FTIR, HRMS/ESI, and NMR techniques. Further, all isolated compounds were evaluated for their α-glucosidase and α-amylase inhibition. As the results, compound 3 respectively exhibited stronger in both inhibitory activities against α-glucosidase and α-amylase (IC50 values of 15.53 and 26.93 µM), than the acarbose standard (IC50 values of 214.50 and 143.48 µM).

5.
Nat Prod Res ; : 1-10, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962970

RESUMO

The polyphenolic compounds of the n-butanol fraction of Linum tenue Desf. (BFLTe) were characterised by RP-UHPLC-ESI-QTOF-MS analyses with the main presence of 6,8-di-C-glucosyl naringenin (11.7%), vicenin 2-isomer 2 (8.18%), luteolin-7,3'-di-O-ß-D-glucoside (7.18%), isovitexin (5.98%), luteolin-7-O-ß-D-glucoside (5.713%), myricitrin (4.41%), luteolin-4'-O-ß-D-glucoside (4.04%), chlorogenic acid (28.68%), 3-(2,6-dihydroxyphenyl)-4-hydroxy-6-methyl-3H-2-benzofuran-1-one (8.17%) and p-coumaric acid (4.0%.). The antioxidant capacity was evaluated using three complementary methods (DPPH, ABTS and Reducing power). Additionally, the antimicrobial activity was tested against eight bacterial strains and the fungi Candida albicans whereas the antidiabetic activity was performed against α-amylase. The anti-Alzheimer activity was tested by inhibiting the butyrylcholinesterase (BChE). The BFLTe showed, for the first-time, a good antioxidant potential in DPPH (IC50:68.83 ± 2.74 µg/mL), ABTS (IC50:48.73 ± 1.07 µg/mL) and Reducing power assays (A0.50:99.98 ± 1.18 µg/mL) and a moderate antimicrobial activity with 250 and 500 µg/mL MICs values. Moreover, the fraction exhibited an excellent inhibition of the BChE (IC50:33.00 ± 0.85 µg/mL) and α-amylase (IC50:1093.13 ± 12.93 µg/mL).

6.
Physiol Rep ; 12(13): e16097, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38955666

RESUMO

Latent associations between low serum amylase and reduced plasma insulin levels and increased adiposity have been described previously in a small study of asymptomatic middle-aged humans. In the present study, we sought to determine the nature of such changes during the longitudinal progression from metabolically normal to overt type 2 diabetes mellitus (T2DM) in nonhuman primates (NHPs), a disease that appears to be the same in both pathophysiology and underlying mechanisms as that which most commonly develops in middle-aged adult humans. Amylase and lipase levels were characterized in 157 unrelated adult rhesus monkeys (Macaca mulatta); 38% developed T2DM while under study. In all monkeys, multivariable linear regression analysis revealed that amylase could be negatively predicted by % body fat (ß -0.29; p = 0.002), age (ß -0.27; p = 0.005), and HbA1c (ß -0.18; p = 0.037). Amylase levels were positively predicted by lipase levels (ß = 0.19; p = -0.024) in all NHPs included in the study. Amylase was significantly lower in NHPs with metabolic syndrome (p < 0.001), prediabetes (PreDM) (p < 0.001), and T2DM (p < 0.001) compared to metabolically normal adult NHPs. Lipase increased in NHPs with PreDM (p = 0.005) and T2DM (p = 0.04) compared to normal NHPs. This is the first longitudinal study of any species, including humans, to show the dynamics of amylase and lipase during the metabolic progression from normal to metabolic syndrome, to PreDM and then to overt T2DM. The extraordinary similarity between humans and monkeys in T2DM, in pancreatic pathophysiology and in metabolic functions give these findings high translational value.


Assuntos
Amilases , Diabetes Mellitus Tipo 2 , Lipase , Macaca mulatta , Síndrome Metabólica , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Lipase/sangue , Lipase/metabolismo , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Estudos Longitudinais , Amilases/sangue , Amilases/metabolismo , Feminino
7.
Int J Biol Macromol ; 275(Pt 2): 133757, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986997

RESUMO

Polyphenol has the considerable effects for inhibition of digestive enzymes, however, inhibition mechanism of molecular size-dependent polyphenols on enzyme activity is still lacking. Herein, inhibition effect and binding interactions of three different structural polyphenols (catechol, quercetin and hesperidin) on α-amylase were studied. Inhibition assays proved that polyphenols significantly inhibited α-amylase and their effects were increased with their molecular sizes. Hesperidin showed the highest inhibition ability of α-amylase, which was determined as IC50 = 0.43 mg/mL. Fluorescence and FT-IR spectroscopy proved that inter-molecular interactions between polyphenols and α-amylase occurred through non-covalent bonds. Besides, the secondary structure of α-amylase was obviously changed after binding with polyphenols. Inter-molecular interactions were investigated using solid-state NMR and molecular docking. Findings proved that hydrogen bonds and π-π stacking interactions were the mainly inter-molecular interactions. We hope this contribution could provide a theoretical basis for developing some digestive enzyme inhibitors from natural polyphenols.

8.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999038

RESUMO

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Assuntos
Benzoxazinas , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/síntese química , Benzoxazinas/química , Benzoxazinas/farmacologia , Benzoxazinas/síntese química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , alfa-Amilases Pancreáticas/antagonistas & inibidores , alfa-Amilases Pancreáticas/metabolismo , Reação de Cicloadição , Estrutura Molecular , Simulação por Computador , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/síntese química , Humanos , Relação Estrutura-Atividade , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Amilases/química , Intestinos/enzimologia
9.
Chem Biodivers ; : e202401021, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954767

RESUMO

α-Amylase inhibition is vital in controlling diabetic complications. Herein, we have synthesized a hybrid scaffold based on thiazole-chalcone to access α-amylase inhbition. The proposed structures were verified with spectroscopic techniques (UV-vis, FT-IR, 1H-, 13C-NMR, and elemental analysis). The synthesized compounds were evaluated for their α-amylase and antioxidant potential. In vitro hemolytic assay was performed to test biocompatibility of all compounds. Among tested compounds, 4c (IC50= 3.8 µM), 4g (IC50= 14.5 µM), and 4f (IC50= 17.1 µM) were found excellent α-amylase inhibitors. However, none of the tested compounds exhibited significant antioxidant activity. All compounds showed less lysis than Triton X-100, but compounds 4f and 4h had the least lysis at all tested concentrations and were found to be safe for human erythrocytes. Molecular docking study was performed to evaluate the binding interactions of ligands with human pancreatic α-amylase (HPA). The binding score -8.09 to -8.507 kcal/mol revealed strong binding interactions in the ligand-protein complex. The docking results supplemented the observed α-amylase inhibition and hence augment the scaffold to serve as leads for the antidiabetic drug development.

10.
Prev Nutr Food Sci ; 29(2): 135-145, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974598

RESUMO

Plant extracts have been widely used in traditional medicine to prevent diabetes. The present study aimed to examine the antihyperglycemic properties of an ethanolic extract from Rhodiola heterodonta roots. In vitro evaluation revealed that treatment with the R. heterodonta extract resulted in significant reactive oxygen species inhibition, glucose binding, glucose transporter activation, and suppression of α-amylase and α-glucosidase. Moreover, the treatment with 100 mg/kg of R. heterodonta extract dramatically decreased glucose levels in glucose-, alloxan-, or adrenaline-induced diabetic rats. The information gathered in this study bridges the knowledge gap between traditional healers in Uzbekistan who utilize R. heterodonta and its potential for future medication development.

11.
Bioelectrochemistry ; 160: 108774, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38981325

RESUMO

Salivary α-amylase (α-ALS) has drawn attention as a possible bioindicator for dental caries. Herein, combining the synergistic properties of multi-walled carbon nanotubes (MWCNTs), ß-cyclodextrin (ß-CD) and starch, an electrochemical sensor is constructed employing ferrocene (FCN) as an electrochemical indicator to oversee the progression of the enzymatic catalysis of α-ALS. The method involves a two-step chemical reaction sequence on a screen-printed carbon electrode (SPCE). X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscope (FE-SEM), and Dynamic light scattering (DLS) were used to characterize the synthesized material, while Static water Contact angle measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were performed to monitor each step of sensor fabrication. The electrochemical sensor permitted to detect α-ALS within the linear range of 0.5-280 U mL-1, revealing detection (LOD), and quantification (LOQ) values of 0.041 U mL-1, and 0.159 U mL-1, respectively. Remarkably, the sensor demonstrated exceptional specificity and selectivity, effectively discriminating against other interfering substances in saliva. Validation of the method involved analyzing α-ALS levels in artificial saliva with an accuracy range of 97 % to 103 %, as well as in real clinical saliva samples across various age groups.

12.
Cell Biochem Biophys ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982021

RESUMO

Type-II diabetes mellitus is a chronic disorder that results from fluctuations in the glucose level leading to hyperglycemia with severe adverse effects increasing worldwide. Alpha-Amylase is the key enzyme involved in the mechanism of glucose formation therefore Alpha-Amylase inhibitors have become a therapeutic target in the development of new leads as they have the potential to suppress glucose levels. Existing drugs targeting Alpha-Amylase highlight major drawbacks in terms of poor absorption rate that causes several gastrointestinal issues. So, this research is aimed to develop novel inhibitors interacting with Alpha-Amylase's active site using structural-based screening, binding pattern analysis, and molecular dynamic simulation. Hence, to search for a potential lead, we analyzed a total of 133 valiolamine derivatives and 535 desoxynojirimycin derivatives that exhibited drug-like properties screened through Lipinski filters. Virtual screening followed by binding interaction analysis we identified ten compounds that exhibited better binding energy scores compared to the standard drugs voglibose and miglitol, used in our study. The docking analysis, ADMET and metabolic site prediction estimated the best top two compounds with good drug profiles. Further, top compounds VG9 and VG15 were promoted to simulation study using the Biovia Discovery study to access the stability at a time interval of 100 ns. MD simulation results revealed that our compound VG9 possesses better conformational stability in the complex to the active site residues of Alpha-Amylase target protein than standard drug voglibose. Thus, our investigation revealed that compound VG9 also exhibits the best pharmacokinetic as well as binding affinity results and could act as a potential lead compound targeting Alpha-Amylase for Type II diabetes.

13.
Chem Asian J ; : e202400505, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959126

RESUMO

In this study, we developed a sensitive method for monitoring α-amylase using a fluorogenic approach based on the host-guest complexation between an amphiphilic pyrenyl derivative (1) and γ-cyclodextrins (γ-CDs). The compound 1 self-assembles into nanofibrils in aqueous solutions. Upon the introduction of γ-CD, compound 1 forms an inclusion complex with it. This complex then participates in the formation of a 2:2 complex with another complex, leading to strong excimer fluorescence. Upon interaction with α-amylase, γ-CD undergoes hydrolysis, leading to the regeneration of nanofibrils, which is accompanied by a decrease in excimer fluorescence and an increase in monomeric fluorescence. This ratiometric fluorescence color change enables the sensitive detection of low levels of α-amylase in human urine, offering a practical approach for early screening of pancreatic-related diseases.

14.
EFSA J ; 22(7): e8870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962758

RESUMO

The food enzyme α-amylase (4-α-d-glucan glucanohydrolase; EC 3.2.1.1) is produced with the non-genetically modified microorganism Bacillus licheniformis strain AE-TA by Amano Enzyme Inc. A safety evaluation of this food enzyme was made previously, in which EFSA concluded that this food enzyme did not give rise to safety concerns when used in eight food manufacturing processes. Subsequently, the applicant has requested to extend its use to include one additional process and to revise the use levels. In this assessment, EFSA updated the safety evaluation of this food enzyme when used in a total of nine food manufacturing processes. As the food enzyme-total organic solids (TOS) are removed from the final foods in two food manufacturing processes, the dietary exposure to the food enzyme-TOS was estimated only for the remaining seven processes. Dietary exposure was calculated to be up to 0.382 mg TOS/kg body weight per day in European populations. Based on the data provided for the previous evaluation and the revised dietary exposure in the present evaluation, the Panel concluded that this food enzyme does not give rise to safety concerns under the revised intended conditions of use.

15.
Stress ; 27(1): 2375588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38975711

RESUMO

Ingestion of L-theanine and L-tyrosine has been shown to reduce salivary stress biomarkers and improve aspects of cognitive performance in response to stress. However, there have been no studies to concurrently examine the impact of both L-theanine and L-tyrosine ingestion during a mental stress challenge (MSC) involving a brief cognitive challenge and a virtual reality based active shooter training drill. Thus, the purpose of this study was to determine the impact of ingestion of L-theanine and L-tyrosine on markers of stress and cognitive performance in response to a virtual reality active shooter drill and cognitive challenge. The cognitive challenge involved a Stroop challenge and mental arithmetic. Eighty subjects (age = 21 ± 2.6 yrs; male = 46; female = 34) were randomly assigned L-tyrosine (n = 28; 2000 mg), L-theanine (n = 25; 200 mg), or placebo (n = 27) prior to MSC exposure. Saliva samples, state-anxiety inventory (SAI) scales, and heart rate (HR) were collected before and after exposure to the MSC. Saliva was analyzed for stress markers α-amylase (sAA) and secretory immunoglobulin A (SIgA). The MSC resulted in significant increases in sAA, SIgA, HR, and SAI. Ingestion of L-theanine and L-tyrosine did not impact markers of stress. However, the L-tyrosine treatment demonstrated significantly lower missed responses compared to the placebo treatment group during the Stroop challenge. These data demonstrate that ingestion of L-theanine or L-tyrosine does not impact markers of stress in response to a MSC but may impact cognitive performance. This study was pre-registered as a clinical trial ("Impact of supplements on stress markers": NCT05592561).


Assuntos
Biomarcadores , Cognição , Glutamatos , Saliva , Estresse Psicológico , Tirosina , Realidade Virtual , Humanos , Masculino , Feminino , Cognição/efeitos dos fármacos , Adulto Jovem , Saliva/química , Adulto , Frequência Cardíaca/efeitos dos fármacos , alfa-Amilases/metabolismo , alfa-Amilases/análise , Imunoglobulina A Secretora/metabolismo
16.
Appl Microbiol Biotechnol ; 108(1): 415, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990377

RESUMO

Currently, the main α-amylase family GH13 has been divided into 47 subfamilies in CAZy, with new subfamilies regularly emerging. The present in silico study was performed to highlight the groups, represented by the maltogenic amylase from Thermotoga neapolitana and the α-amylase from Haloarcula japonica, which are worth of creating their own new GH13 subfamilies. This enlarges functional annotation and thus allows more precise prediction of the function of putative proteins. Interestingly, those two share certain sequence features, e.g. the highly conserved cysteine in the second conserved sequence region (CSR-II) directly preceding the catalytic nucleophile, or the well-preserved GQ character of the end of CSR-VII. On the other hand, the two groups bear also specific and highly conserved positions that distinguish them not only from each other but also from representatives of remaining GH13 subfamilies established so far. For the T. neapolitana maltogenic amylase group, it is the stretch of residues at the end of CSR-V highly conserved as L-[DN]. The H. japonica α-amylase group can be characterized by a highly conserved [WY]-[GA] sequence at the end of CSR-II. Other specific sequence features include an almost fully conserved aspartic acid located directly preceding the general acid/base in CSR-III or well-preserved glutamic acid in CSR-IV. The assumption that these two groups represent two mutually related, but simultaneously independent GH13 subfamilies has been supported by phylogenetic analysis as well as by comparison of tertiary structures. The main α-amylase family GH13 has thus been expanded by two novel subfamilies GH13_48 and GH13_49. KEY POINTS: • In silico analysis of two groups of family GH13 members with characterized representatives • Identification of certain common, but also some specific sequence features in seven CSRs • Creation of two novel subfamilies-GH13_48 and GH13_49 within the CAZy database.


Assuntos
Filogenia , alfa-Amilases , alfa-Amilases/genética , alfa-Amilases/metabolismo , alfa-Amilases/química , Sequência de Aminoácidos , Sequência Conservada , Alinhamento de Sequência
17.
Curr Diabetes Rev ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956911

RESUMO

BACKGROUND: Diabetes mellitus (DM), arising from pancreatic ß-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE: The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHOD: This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS: Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION: The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.

.

18.
J Sci Food Agric ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877535

RESUMO

BACKGROUND: This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS: In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 µg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION: Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.

19.
Transplant Rev (Orlando) ; 38(4): 100861, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870826

RESUMO

Despite the clinical relevance of graft pancreatitis (GP) after pancreas transplantation (PT), a universally accepted definition is lacking. Aim of this scoping review was to provide a systematic overview of GP definitions reported in the literature. MEDLINE, Web of Science and Embase were searched for relevant articles. Prospective/retrospective studies reporting a GP definition were included. The included series (n = 20) used four main criteria (clinical, biochemical, radiological and pathological) to define GP. Overall, 9 studies defined GP using a single criterion (n = 8 biochemical, n = 1 pathological), 7 series using two criteria (n = 3 clinical + biochemical, n = 3 biochemical + radiological, n = 1 clinical + radiological), 3 series using three criteria (n = 3 clinical + biochemical + radiological), and 1 series using four criteria. Overall, 20 definitions of GP were found. GP rate was reported by 19 series and ranged between 0% and 87%. This scoping review confirms that a universally accepted definition of GP is absent, and there is no consensus on the criteria on which it should be grounded. Future research should focus on developing a validated definition of GP.

20.
J Pharm Bioallied Sci ; 16(Suppl 2): S1291-S1294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882866

RESUMO

Diabetes mellitus is a persistent metabolic condition marked by elevated blood glucose levels due to compromised insulin secretion or functionality. The search for natural antidiabetic agents has gained attention due to their potential effectiveness and safety profiles. Sessuvium portulacastrum, a coastal plant, has been traditionally used for various medicinal purposes. This study investigates the antidiabetic potential of Sessuvium portulacastrum aqueous extract by analyzing its inhibitory effects on key enzymes involved in carbohydrate metabolism and exploring its molecular interactions with critical target proteins. The aqueous extract of Sessuvium portulacastrum was prepared and used for in vitro analysis. The reduced activity of the extract against α-amylase and α-glucosidase enzymes, crucial in glucose absorption and postprandial hyperglycemia, was assessed. Molecular docking techniques were employed to explore the potential interactions between active compounds in the extract and diabetes-related proteins, including BAX, GSK3ß, and CADH. The study revealed significant inhibition of both alpha-amylase and alpha-glucosidase enzymes by Sessuvium portulacastrum aqueous extract, indicating its potential to reduce glucose absorption and postprandial hyperglycemia. Moreover, the molecular docking analysis demonstrated strong binding interactions between active compounds in the extract and key proteins involved in diabetes-related pathways, namely apoptotic pathways, glycogen synthesis, and cell adhesion. The findings of this study highlight the promising antidiabetic potential of Sessuvium portulacastrum aqueous extract. Upcoming research should get an attention on isolating and characterizing the active compounds responsible for these effects on antidiabetic therapies from natural sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...