Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.821
Filtrar
1.
Intern Emerg Med ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001978

RESUMO

Multidrug-resistant organisms (MDROs) are prevalent in patients admitted to the Emergency Department (ED) and increase the risk of inappropriate empirical antibiotic therapy. Risk stratification for MDRO infection is essential to early identify patients requiring empirical broad-spectrum antibiotic therapy, but it remains challenging for emergency physicians. This study aimed to evaluate prevalence, risk factors, and outcomes of patients admitted to the ED with a bloodstream infection (BSI) caused by MDROs. A retrospective observational study enrolling all consecutive adult patients admitted with a BSI to the ED of Niguarda Hospital, Italy, from January 2019 to December 2021 was performed. 757 patients were enrolled, 14.1% with septic shock. 156 (20%) patients had a BSI caused by MDRO: extended-spectrum beta-lactamase (ESBL) producing Enterobacterales were the most prevalent followed by methicillin-resistant Staphylococcus aureus (MRSA). Risk factors for BSI due to MDRO and specifically for ESBL were chronic renal failure (OR 2.2; 95%CI 1.4-3.6), nursing home residency (OR 4.4; 95%CI 1.9-10.2) and antibiotic therapy in the last 90-days (OR 2.6; 95%CI 1.7-4), whereas for MRSA were dialysis (OR 12.3; 95%CI 1.8-83), antibiotic therapy and/or hospital admission in the past 90-days (OR 3.6; 95%CI 1.2-10.6) and ureteral stent or nephrostomy (OR 7.8; 95%CI 1.5-40.9). Patients with BSI due to MDRO had a higher rate of inappropriate empirical antibiotic therapy (50%) and longer length of stay, but no higher in-hospital mortality. Among patients admitted to the ED with a BSI, MDROs are frequent and often associated with inappropriate empirical antibiotic therapy. Specific updated risk factors for MDRO may help clinicians to better identify patients requiring a broader antibiotic therapy in the ED, while awaiting microbiological results.

2.
J Infect Dev Ctries ; 18(6): 943-949, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38991000

RESUMO

INTRODUCTION: Our goal was to investigate the antimicrobial resistance due to beta-lactamase genes and virulent determinants (biofilm-forming ability) expressed by Acinetobacter collected from health settings in Pakistan. A cross-sectional study was conducted for the molecular characterization of carbapenemases and biofilm-producing strains of Acinetobacter spp. METHODOLOGY: Two twenty-three imipenem-resistant Acinetobacter isolates were analyzed from 2020 to 2023.The combination disk test and modified hodge test were performed. Biofilm forming ability was determined by polystyrene tube assay. Multiplex polymerase chain reaction (PCR) for virulent and biofilm-forming genes, and 16S rRNA sequencing were performed. RESULTS: 118 (52.9%) carbapenem-resistant Acinetobacter (CR-AB) were isolated from wounds and pus, 121 (54.2%) from males, and 92 (41.2%) from 26-50-years-olds. More than 80% of strains produced ß-lactamases and carbapenemases. Based on the PCR amplification of the ITS gene, 174 (78.0%) CR-AB strains were identified from CR-Acinetobacter non-baumannii (ANB). Most CR-AB were strong and moderate biofilm producers. Genetic analysis revealed the blaOXA-23, blaTEM, blaCTX-M blaNDM-1 and blaVIM were prevalent in CR-AB with frequencies 91 (94.8%), 68 (70.8%), 19 (19.7%), 53 (55.2%), 2 (2.0%) respectively. Among virulence genes, OmpA was dominant in CR-AB isolates from wound (83, 86.4%), csuE 63 (80.7%) from non-wound specimens and significantly correlated with blaNDM and blaOXA genes. Phylogenetic analysis revealed three different clades for strains based on specimens. CONCLUSIONS: CR-AB was highly prevalent in Pakistan and associated with wound infections. The genes, blaOXA-23, blaTEM, blaCTX-M, and blaNDM-1 were detected in CR-AB. Most CR-AB were strong biofilm producers with virulent genes OmpA and csuE.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biofilmes , Carbapenêmicos , beta-Lactamases , Biofilmes/crescimento & desenvolvimento , beta-Lactamases/genética , Humanos , Paquistão , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Masculino , Estudos Transversais , Adulto , Pessoa de Meia-Idade , Feminino , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Adulto Jovem , Proteínas de Bactérias/genética , Adolescente
3.
Artigo em Inglês | MEDLINE | ID: mdl-38996870

RESUMO

INTRODUCTION: Multi-carbapenemase-producing Enterobacterales (M-CPE) are increasingly described. We characterized the M-CPE isolates prospectively recovered in our hospital (Madrid, Spain) over two years (2021-2022). METHODS: We collected 796 carbapenem resistant Enterobacterales (CRE) from clinical and surveillance samples. Carbapenemase production was confirmed with phenotypic (immunochromatographic, disk diffusion) and molecular (PCR, WGS) techniques. Antimicrobial susceptibility was evaluated by a standard broth microdilution method. Clinical and demographic data were collected. RESULTS: Overall, 23 M-CPE (10 Klebsiella pneumoniae, 6 Citrobacter freundii complex, 3 Escherichia coli, 2 Klebsiella oxytoca, and 2 Enterobacter hormaechei) isolates were recovered from 17 patients (3% with CPE, 0.27 cases per 1000 admissions). OXA-48+KPC-3 (7/23) and KPC-3+VIM-1 (5/23) were the most frequent carbapenemase combinations. All patients had prior antibiotics exposure, including carbapenems (8/17). High resistance rates to ceftazidime/avibactam (14/23), imipenem/relebactam (16/23) and meropenem/vaborbactam (7/23) were found. Ceftazidime/avibactam+aztreonam combination was synergistic in all metallo-ß-lactamase producers. Clonal and non-clonal related isolates were found, particularly in K. pneumoniae (5 ST29, 3 ST147, 3 ST307) and C. freundii (3 ST8, 2 ST125, 1 ST563). NDM-1+OXA-48 was introduced with the ST147-K. pneumoniae high-risk clone linked to the transfer of an Ukrainian patient. We identified four possible nosocomial clonal transmission events between patients of the same clone with the same combination of carbapenemases (KPC-3+VIM-1-ST29-K. pneumoniae, NDM-1+OXA-48-ST147-K. pneumoniae and KPC-2+VIM-1-ST145-K. oxytoca). Carbapenemase-encoding genes were located on different plasmids, except for VIM-1+KPC-2-ST145-K. oxytoca. Cross-species transmission and a possible acquisition overtime was found, particularly between K. pneumoniae and E. coli producing OXA-48+KPC-3. CONCLUSION: M-CPE is an emerging threat in our hospital. Co-production of different carbapenemases, including metallo-ß-lactamases, limits therapeutic options and depicts the need to reinforce infection control measures.

4.
Lasers Surg Med ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039622

RESUMO

OBJECTIVE: In this study, we evaluated the effectiveness of antimicrobial blue light (aBL; 410 nm wavelength) against ß-lactamase-carrying bacteria and the effect of aBL on the activity of ß-lactamases. METHODS: Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae strains carrying ß-lactamases as well as a purified ß-lactamase enzymes were studied. ß-lactamase activity was assessed using a chromogenic cephalosporin hydrolysis assay. Additionally, we evaluated the role of porphyrins in the photoreaction, as well as protein degradation by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Finally, we investigated the bactericidal effect of combined aBL-ceftazidime exposure against a metallo-ß-lactamase expressing P. aeruginosa strain. RESULTS: Our study demonstrated that aBL effectively killed ß-lactamase-producing bacteria and reduced ß-lactamase activity. After an aBL exposure of 1.52 J/cm2, a 50% reduction in enzymatic activity was observed in P. aeruginosa. Additionally, we found a 40% decrease in the photoreaction activity of porphyrins following an aBL exposure of 64.8 J/cm2. We also revealed that aBL reduced ß-lactamase activity via protein degradation (after 136.4 J/cm2). Additionally, aBL markedly improved the bactericidal effect of ceftazidime (by >4-log10) in the metallo-ß-lactamase P. aeruginosa strain. CONCLUSION: Our results provide evidence that aBL compromises bacterial ß-lactamase activity, offering a potential approach to overcome ß-lactam resistance in bacteria.

5.
Adv Protein Chem Struct Biol ; 141: 495-538, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38960484

RESUMO

The gut microbial metalloenzymes play an important role in maintaining the balance between gut microbial ecosystem, human physiologically processes and immune system. The metals coordinated into active site contribute in various detoxification and defense strategies to avoid unfavourable environment and ensure bacterial survival in human gut. Metallo-ß-lactamase is a potent degrader of antibiotics present in periplasmic space of both commensals and pathogenic bacteria. The resistance to anti-microbial agents developed in this enzyme is one of the global threats for human health. The organophosphorus eliminator, organophosphorus hydrolases have evolved over a course of time to hydrolyze toxic organophosphorus compounds and decrease its effect on human health. Further, the redox stress responders namely superoxide dismutase and catalase are key metalloenzymes in reducing both endogenous and exogenous oxidative stress. They hold a great importance for pathogens as they contribute in pathogenesis in human gut along with reduction of oxidative stress. The in-silico study on these enzymes reveals the importance of point mutation for the evolution of these enzymes in order to enhance their enzyme activity and stability. Various mutation studies were conducted to investigate the catalytic activity of these enzymes. By using the "directed evolution" method, the enzymes involved in detoxification and defense system can be engineered to produce new variants with enhance catalytic features, which may be used to predict the severity due to multi-drug resistance and degradation pattern of organophosphorus compounds in human gut.


Assuntos
Microbioma Gastrointestinal , Metaloproteínas , Espécies Reativas de Oxigênio , Xenobióticos , Xenobióticos/metabolismo , Humanos , Metaloproteínas/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Espécies Reativas de Oxigênio/metabolismo
6.
ChemMedChem ; : e202400302, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946213

RESUMO

Antibiotics, particularly the ß-lactams, are a cornerstone of modern medicine. However, the rise of bacterial resistance to these agents, particularly through the actions of ß-lactamases, poses a significant threat to our continued ability to effectively treat infections. Metallo-ß-lactamases (MBLs) are of particular concern due to their ability to hydrolyze a wide range of ß-lactam antibiotics including carbapenems. For this reason there is growing interest in the development of MBL inhibitors as well as novel antibiotics that can overcome MBL-mediated resistance. Here, we report the synthesis and evaluation of novel conjugates that combine a carbapenem (meropenem or ertapenem) with a recently reported MBL inhibiting indole carboxylate scaffold. These hybrids were found to display potent inhibition against MBLs including NDM-1 and IMP-1, with IC50 values in the low nanomolar range. However, their antibacterial potency was limited. Mechanistic studies suggest that despite maintaining effective MBL inhibiting activity in live bacteria, the new carbapenem/MBL inhibitor conjugates have a reduced ability to engage with the bacterial target of the ß-lactams.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38958811

RESUMO

Leminorella grimontii strain LG-KP-E1-2-T0 was isolated from Zophobas morio larvae. It showed a susceptibility phenotype compatible with the expression of an inducible extended-spectrum ß-lactamase. The presence of a chromosomal bla gene encoding for the class A GRI-1 ß-lactamase was revealed by whole-genome sequencing. GRI-1 shared the highest amino acid identity with RIC-1 and OXY-type ß-lactamases (76-80%). Analysis of six further publicly-available L. grimontii draft genomes deposited in NCBI revealed that blaGRI-1 was always present. Core-genome analysis indicated that LG-KP-E1-2-T0 was unique from other strains. We provided the first complete genome of L. grimontii and new insights on its chromosomal ß-lactamases.

8.
Antimicrob Agents Chemother ; : e0012724, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995033

RESUMO

The siderophore-cephalosporin cefiderocol (FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux-mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR, pirS, pirA, piuA, or piuD from 498 unique isolates collected before the introduction of FDC from four clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n = 15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild-type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.

9.
Microbiol Spectr ; : e0426623, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934607

RESUMO

New ß-lactam-ß-lactamase inhibitor combinations represent last-resort antibiotics to treat infections caused by multidrug-resistant Pseudomonas aeruginosa. Carbapenemase gene acquisition can limit their spectrum of activity, and reports of resistance toward these new molecules are increasing. In this multi-center study, we evaluated the prevalence of resistance to ceftazidime-avibactam (CZA) and comparators among P. aeruginosa clinical isolates from bloodstream infections, hospital-acquired or ventilator-associated pneumonia, and urinary tract infections, circulating in Southern Italy. We also investigated the clonality and content of relevant ß-lactam resistance mechanisms of CZA-resistant (CZAR) isolates. A total of 120 P. aeruginosa isolates were collected. CZA was among the most active ß-lactams, retaining susceptibility in the 81.7% of cases, preceded by cefiderocol (95.8%) and followed by ceftolozane-tazobactam (79.2%), meropenem-vaborbactam (76.1%), imipenem-relebactam (75%), and aztreonam (69.6%). Among non-ß-lactams, colistin and amikacin were active against 100% and 85.8% of isolates respectively. In CZAR strains subjected to whole-genome sequencing (n = 18), resistance was mainly due to the expression of metallo-ß-lactamases (66.6% VIM-type and 5.5% FIM-1), followed by PER-1 (16.6%) and GES-1 (5.5%) extended-spectrum ß-lactamases, mostly carried by international high-risk clones (ST111 and ST235). Of note, two strains producing the PER-1 enzyme were resistant to all ß-lactams, including cefiderocol. In conclusion, the CZA resistance rate among P. aeruginosa clinical isolates in Southern Italy remained low. CZAR isolates were mostly metallo-ß-lactamases producers and belonging to ST111 and ST253 epidemic clones. It is important to implement robust surveillance systems to monitor emergence of new resistance mechanisms and to limit the spread of P. aeruginosa high-risk clones. IMPORTANCE: Multidrug-resistant Pseudomonas aeruginosa infections are a growing threat due to the limited therapeutic options available. Ceftazidime-avibactam (CZA) is among the last-resort antibiotics for the treatment of difficult-to-treat P. aeruginosa infections, although resistance due to the acquisition of transferable ß-lactamase genes is increasing. With this work, we report that CZA represents a highly active antipseudomonal ß-lactam compound (after cefiderocol), and that metallo-ß-lactamases (VIM-type) and extended-spectrum ß-lactamases (GES and PER-type) production is the major factor underlying CZA resistance in isolates from Southern Italian hospitals. In addition, we reported that such resistance mechanisms were mainly carried by the international high-risk clones ST111 and ST235.

10.
Genes (Basel) ; 15(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38927749

RESUMO

BACKGROUND: Currently, the Enterobacteriaceae species are responsible for a variety of serious infections and are already considered a global public health problem, especially in underdeveloped countries, where surveillance and monitoring programs are still scarce and limited. Analyses were performed on the complete genome of an extensively antibiotic-resistant strain of Enterobater hormaechei, which was isolated from a patient with non-Hodgkin's lymphoma, who had been admitted to a hospital in the city of Manaus, Brazil. METHODS: Phenotypical identification and susceptibility tests were performed in automated equipment. Total DNA extraction was performed using the PureLink genomic DNA mini-Kit. The genomic DNA library was prepared with Illumina Microbial Amplicon Prep and sequenced in the MiSeq Illumina Platform. The assembly of the whole-genome and individual analyses of specific resistance genes extracted were carried out using online tools and the Geneious Prime software. RESULTS: The analyses identified an extensively resistant ST90 clone of E. hormaechei carrying different genes, including blaCTX-M-15, blaGES-2, blaTEM-1A, blaACT-15, blaOXA-1 and blaNDM-1, [aac(3)-IIa, aac(6')-Ian, ant(2″)-Ia], [aac(6')-Ib-cr, (qnrB1)], dfrA25, sul1 and sul2, catB3, fosA, and qnrB, in addition to resistance to chlorhexidine, which is widely used in patient antisepsis. CONCLUSIONS: These findings highlight the need for actions to control and monitor these pathogens in the hospital environment.


Assuntos
Farmacorresistência Bacteriana Múltipla , Enterobacter , Genoma Bacteriano , Linfoma não Hodgkin , Sequenciamento Completo do Genoma , Humanos , Enterobacter/genética , Enterobacter/efeitos dos fármacos , Enterobacter/isolamento & purificação , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/microbiologia , Linfoma não Hodgkin/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Sequenciamento Completo do Genoma/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Testes de Sensibilidade Microbiana , Brasil
11.
Cureus ; 16(5): e60200, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38868241

RESUMO

Antimicrobial resistance is a growing problem. Novel resistance mechanisms continue to emerge, and the pipeline of antimicrobial development struggles to keep up. Antimicrobial stewardship and proper infection control are key in preventing the spread of these infections. A case of a carbapenem-resistant Enterobacter cloacae complex urinary isolate was identified in an 81-year-old male patient at the San Antonio Veterans Affairs hospital, Texas, USA. The patient was placed on isolation, and further testing of the isolate to other antibiotics requested. The purpose of this study is to analyze the details of reports of such cases and to review at-risk populations and appropriate treatment for resistant organisms.

12.
Infect Drug Resist ; 17: 2307-2313, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882656

RESUMO

Background: The difficulties in attaining effective antibiotic therapy arising from the multidrug resistance of Gram-negative bacilli compel the exploration of new possibilities for synergistic interactions among existing antibiotics. Research Design and Methods: An analysis was conducted to assess the efficacy of two antibiotic therapy regimens in the treatment of infections caused by Klebsiella pneumoniae strains producing carbapenemases (MBL). Two patient groups were considered: Group A - individuals in whom the treatment of infection involved the application of ceftazidime-avibactam in combination with aztreonam. Group B comprised patients subjected to an alternative antibiotic therapy regimen. Results: In the group subjected to the treatment regimen involving ceftazidime-avibactam and aztreonam, as compared to alternative antibiotic combinations, a statistically lower mortality rate during the course of treatment and a faster clinical response to the administered therapy were evident. Conclusion: The results obtained may be applicable to routine in vitro assays performed and serve as valuable guidance for the potential utilization of the positive effect of antibiotic therapy through the synergy between ceftazidime-avibactam and aztreonam. The selection of antibiotics employed in the therapy of invasive infections caused by K. pneumoniae influences the ultimate treatment outcome.

13.
F1000Res ; 13: 36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872735

RESUMO

Background: Tigecycline, a glycylcycline antibiotic is a promising option for the treatment of single or multidrug resistant pathogens. The aim of the study was to evaluate the in-vitro Tigecycline susceptibility of various pathogens from clinical samples received at the tertiary care hospitals in South India. Methods: The analysis of specimens from patients admitted were carried out in this prospective cross sectional study. The identification and antimicrobial susceptibility testing was performed by semi-automated Vitek 2 systems and Kirby Bauer method. Pattern of data analysis was done by descriptive statistics. Results: Among 2574 isolates, 812 isolates were Gram positive pathogens and 1762 isolates were Gram negative pathogens. Resistance to Tigecycline was more common among Gram negative pathogens (18.62%) in comparison to the Gram positive pathogens (0.49%). Among 740 Extended Spectrum Beta Lactamases (ESBL) producers such as Klebsiella species & E coli, 629 isolates were susceptible, and 93 isolates were resistant to the tigecycline. All the methicillin resistant Staphylococcus aureus (MRSA) isolates were susceptible to tigecycline. Conclusion: Multidrug resistant (MDR) pathogens like Acinetobacter species, and Klebsiella species were found to be highly effective in vitro to tigecycline for elimination of infections caused by both Gram positive and Gram negative pathogens. The use of combination therapy becomes crucial to prevent the development of Pan Drug resistance.


Assuntos
Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Tigeciclina , Tigeciclina/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estudos Transversais , Minociclina/análogos & derivados , Minociclina/farmacologia , Minociclina/uso terapêutico , Bactérias Gram-Negativas/efeitos dos fármacos , Estudos Prospectivos , Índia , Bactérias Gram-Positivas/efeitos dos fármacos
14.
Future Microbiol ; : 1-11, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884302

RESUMO

Aim: The study determines rates of carbapenem resistance (CR) and frequency of blaNDM in multidrug-resistance (MDR) or extensive drug resistance (XDR), and evaluates the potential of phenotypic tests for detecting NDM production. Materials & methods: Singleplex PCR was used to detect blaNDM. Phenotypic tests, including combination disc test (CDST) and modified Hodge test (MHT), were evaluated for NDM production. Results: Among 338 CR isolates, 47.63% were MDR, whereas 52.36% were XDR with 53.25% carrying blaNDM. MHT was found to be discriminative for detecting NDM production, whereas no significant association was observed for CDST. Conclusion: The high incidence of CR and MDR and XDR isolates possessing blaNDM presents an impending threat in therapeutics. Limitations of phenotypic tests suggest better testing, including molecular detection of the enzyme.


[Box: see text].

15.
BMC Infect Dis ; 24(1): 554, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831286

RESUMO

BACKGROUND AND OBJECTIVE(S): CRISPR-Cas is a prokaryotic adaptive immune system that protects bacteria and archaea against mobile genetic elements (MGEs) such as bacteriophages plasmids, and transposons. In this study, we aimed to assess the prevalence of the CRISPR-Cas systems and their association with antibiotic resistance in one of the most challenging bacterial pathogens, Klebsiella pneumoniae. MATERIALS AND METHODS: A total of 105 K. pneumoniae isolates were collected from various clinical infections. Extended-spectrum ß-lactamases (ESBLs) phenotypically were detected and the presence of ESBL, aminoglycoside-modifying enzymes (AME), and CRISPR-Cas system subtype genes were identified using PCR. Moreover, the diversity of the isolates was determined by enterobacterial repetitive intergenic consensus (ERIC)-PCR. RESULTS: Phenotypically, 41.9% (44/105) of the isolates were found to be ESBL producers. A significant inverse correlation existed between the subtype I-E CRISPR-Cas system's presence and ESBL production in K. pneumoniae isolates. Additionally, the frequency of the ESBL genes blaCTX-M1 (3%), blaCTX-M9 (12.1%), blaSHV (51.5%), and blaTEM (33.3%), as well as some AME genes such as aac(3)-Iva (21.2%) and ant(2'')-Ia (3%) was significantly lower in the isolates with the subtype I-E CRISPR-Cas system in comparison to CRISPR-negative isolates. There was a significant inverse correlation between the presence of ESBL and some AME genes with subtype I-E CRISPR-Cas system. CONCLUSION: The presence of the subtype I-E CRISPR-Cas system was correlated with the antibiotic-resistant gene (ARGs). The isolates with subtype I-E CRISPR-Cas system had a lower frequency of ESBL genes and some AME genes than CRISPR-negative isolates.


Assuntos
Antibacterianos , Sistemas CRISPR-Cas , Infecções por Klebsiella , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Humanos , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Prevalência , Masculino , Feminino , Pessoa de Meia-Idade
16.
Artigo em Inglês | MEDLINE | ID: mdl-38935227

RESUMO

PURPOSE: To investigate the association of potential risk factors for urinary tract infections (UTI) caused by E. coli producing ESBL vs. not producing ESBL in Iceland. METHODS: Observational, case-control study including a cohort of 27,747 patients (22,800 females, 4,947 males; 1207 cases, 26,540 controls) of all ages with UTI caused by E. coli in 2012 to 2021 at the clinical microbiology laboratory covering about 2/3 of the Icelandic population. Clinical patient data was obtained from three national databases. Logistic regression was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) as a measure of association between ESBL and exposure variables. RESULTS: The proportion of samples with ESBL-producing E. coli increased during the study period, from 2.6% in 2012 to 7.6% in 2021 (p < 0.001). ESBL-positive strains were detected in 1207 individuals (4.4%), 905 females (4.0%) and 302 males (6.1%). The following risk factors were identified: Male sex, higher age, institution type (hospital, nursing home), hospital-associated UTI, Charlson comorbidity index score ≥ 3, history of cystitis or hospitalization in the past year, and prescriptions for certain antibiotics or proton pump inhibitors (PPIs: OR 1.51) in the past half year. The antibiotic associated with the highest risk was ciprofloxacin (OR 2.45). CONCLUSION: The prevalence of UTIs caused by ESBL-producing E. coli has been increasing in Iceland. The strongest risk factors for ESBL production were previous antibiotic use, especially ciprofloxacin, and previous PPI use, both considered to be overprescribed. It is important to promote the prudent use of these drugs.

17.
Health Technol Assess ; 28(28): 1-238, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938145

RESUMO

Background: To limit the use of antimicrobials without disincentivising the development of novel antimicrobials, there is interest in establishing innovative models that fund antimicrobials based on an evaluation of their value as opposed to the volumes used. The aim of this project was to evaluate the population-level health benefit of cefiderocol in the NHS in England, for the treatment of severe aerobic Gram-negative bacterial infections when used within its licensed indications. The results were used to inform the National Institute for Health and Care Excellence guidance in support of commercial discussions regarding contract value between the manufacturer and NHS England. Methods: The health benefit of cefiderocol was first derived for a series of high-value clinical scenarios. These represented uses that were expected to have a significant impact on patients' mortality risks and health-related quality of life. The clinical effectiveness of cefiderocol relative to its comparators was estimated by synthesising evidence on susceptibility of the pathogens of interest to the antimicrobials in a network meta-analysis. Patient-level costs and health outcomes of cefiderocol under various usage scenarios compared with alternative management strategies were quantified using decision modelling. Results were reported as incremental net health effects expressed in quality-adjusted life-years, which were scaled to 20-year population values using infection number forecasts based on data from Public Health England. The outcomes estimated for the high-value clinical scenarios were extrapolated to other expected uses for cefiderocol. Results: Among Enterobacterales isolates with the metallo-beta-lactamase resistance mechanism, the base-case network meta-analysis found that cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.32, 95% credible intervals 0.04 to 2.47), but the result was not statistically significant. The other treatments were also associated with lower susceptibility than colistin, but the results were not statistically significant. In the metallo-beta-lactamase Pseudomonas aeruginosa base-case network meta-analysis, cefiderocol was associated with a lower susceptibility relative to colistin (odds ratio 0.44, 95% credible intervals 0.03 to 3.94), but the result was not statistically significant. The other treatments were associated with no susceptibility. In the base case, patient-level benefit of cefiderocol was between 0.02 and 0.15 quality-adjusted life-years, depending on the site of infection, the pathogen and the usage scenario. There was a high degree of uncertainty surrounding the benefits of cefiderocol across all subgroups. There was substantial uncertainty in the number of infections that are suitable for treatment with cefiderocol, so population-level results are presented for a range of scenarios for the current infection numbers, the expected increases in infections over time and rates of emergence of resistance. The population-level benefits varied substantially across the base-case scenarios, from 896 to 3559 quality-adjusted life-years over 20 years. Conclusion: This work has provided quantitative estimates of the value of cefiderocol within its areas of expected usage within the NHS. Limitations: Given existing evidence, the estimates of the value of cefiderocol are highly uncertain. Future work: Future evaluations of antimicrobials would benefit from improvements to NHS data linkages; research to support appropriate synthesis of susceptibility studies; and application of routine data and decision modelling to assess enablement value. Study registration: No registration of this study was undertaken. Funding: This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment Policy Research Programme (NIHR award ref: NIHR135591), conducted through the Policy Research Unit in Economic Methods of Evaluation in Health and Social Care Interventions, PR-PRU-1217-20401, and is published in full in Health Technology Assessment; Vol. 28, No. 28. See the NIHR Funding and Awards website for further award information.


This project tested new methods for estimating the value to the NHS of an antimicrobial, cefiderocol, so its manufacturer could be paid fairly even if very little drug is used in order to reduce the risk of bacteria becoming resistant to the product. Clinicians said that the greatest benefit of cefiderocol is when used for complicated urinary tract infections and pneumonia acquired within hospitals caused by two types of bacteria (called Enterobacterales and Pseudomonas aeruginosa), with a resistance mechanism called metallo-beta-lactamase. Because there were no relevant clinical trial data, we estimated how effective cefiderocol and alternative treatments were by doing a systematic literature review of studies that grew bacteria from infections in the laboratory and tested the drugs on them. We linked this to data estimating the long-term health and survival of patients. Some evidence was obtained by asking clinicians detailed questions about what they thought the effects would be based on their experience and the available evidence. We included the side effects of the alternative treatments, some of which can cause kidney damage. We estimated how many infections there would be in the UK, whether they would increase over time and how resistance to treatments may change over time. Clinicians told us that they would also use cefiderocol to treat intra-abdominal and bloodstream infections, and some infections caused by another bacteria called Stenotrophomonas. We estimated how many of these infections there would be, and assumed the same health benefits as for other types of infections. The total value to the NHS was calculated using these estimates. We also considered whether we had missed any additional elements of value. We estimated that the value to the NHS was £18­71 million over 20 years. This reflects the maximum the NHS could pay for use of cefiderocol if the health lost as a result of making these payments rather than funding other NHS services is not to exceed the health benefits of using this antimicrobial. However, these estimates are uncertain due to limitations with the evidence used to produce them and assumptions that had to be made.


Assuntos
Antibacterianos , Cefiderocol , Cefalosporinas , Análise Custo-Benefício , Infecções por Bactérias Gram-Negativas , Anos de Vida Ajustados por Qualidade de Vida , Avaliação da Tecnologia Biomédica , Humanos , Cefalosporinas/uso terapêutico , Antibacterianos/uso terapêutico , Antibacterianos/economia , Inglaterra , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Medicina Estatal , Qualidade de Vida
18.
mBio ; 15(7): e0141924, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920394

RESUMO

Pseudomonas aeruginosa encodes the beta-lactamase AmpC, which promotes resistance to beta-lactam antibiotics. Expression of ampC is induced by anhydro-muropeptides (AMPs) released from the peptidoglycan (PG) cell wall upon beta-lactam treatment. AmpC can also be induced via genetic inactivation of PG biogenesis factors such as the endopeptidase DacB that cleaves PG crosslinks. Mutants in dacB occur in beta-lactam-resistant clinical isolates of P. aeruginosa, but it has remained unclear why DacB inactivation promotes ampC induction. Similarly, the inactivation of lytic transglycosylase (LT) enzymes such as SltB1 that cut PG glycans has also been associated with ampC induction and beta-lactam resistance. Given that LT enzymes are capable of producing AMP products that serve as ampC inducers, this latter observation has been especially difficult to explain. Here, we show that ampC induction in sltB1 or dacB mutants requires another LT enzyme called MltG. In Escherichia coli, MltG has been implicated in the degradation of nascent PG strands produced upon beta-lactam treatment. Accordingly, in P. aeruginosa sltB1 and dacB mutants, we detected the MltG-dependent production of pentapeptide-containing AMP products that are signatures of nascent PG degradation. Our results therefore support a model in which SltB1 and DacB use their PG-cleaving activity to open space in the PG matrix for the insertion of new material. Thus, their inactivation mimics low-level beta-lactam treatment by reducing the efficiency of new PG insertion into the wall, causing the degradation of some nascent PG material by MltG to produce the ampC-inducing signal. IMPORTANCE: Inducible beta-lactamases like the ampC system of Pseudomonas aeruginosa are a common determinant of beta-lactam resistance among gram-negative bacteria. The regulation of ampC is elegantly tuned to detect defects in cell wall synthesis caused by beta-lactam drugs. Studies of mutations causing ampC induction in the absence of drug therefore promise to reveal new insights into the process of cell wall biogenesis in addition to aiding our understanding of how resistance to beta-lactam antibiotics arises in the clinic. In this study, the ampC induction phenotype for mutants lacking a glycan-cleaving enzyme or an enzyme that cuts cell wall crosslinks was used to uncover a potential role for these enzymes in making space in the wall matrix for the insertion of new material during cell growth.


Assuntos
Proteínas de Bactérias , Parede Celular , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Parede Celular/metabolismo , Parede Celular/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resistência beta-Lactâmica/genética , Fenótipo , Peptidoglicano/metabolismo , Antibacterianos/farmacologia , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Regulação Bacteriana da Expressão Gênica
19.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38886125

RESUMO

AIMS: To investigate the genetic profile and characterize antimicrobial resistance, including the main ß-lactam antibiotic resistance genes, in Acinetobacterbaumannii isolates from a tertiary hospital in Recife-PE, Brazil, in the post-COVID-19 pandemic period. METHODS AND RESULTS: Acinetobacter baumannii isolates were collected between 2023 and 2024 from diverse clinical samples. Antimicrobial resistance testing followed standardized protocols, with ß-lactamase-encoding genes detected via PCR and sequencing. Investigation into ISAba1 upstream of blaOXA-carbapenemase and blaADC genes was also conducted. Genetic diversity was assessed through ERIC-PCR. Among the 78 A. baumannii, widespread resistance to multiple antimicrobials was evident. Various acquired ß-lactamase-encoding genes (blaOXA-23,-24,-58,-143, blaVIM, and blaNDM) were detected. Furthermore, this is the first report of blaVIM-2 in A. baumannii isolates harboring either the blaOXA-23-like or the blaOXA-143 gene in Brazil. Molecular typing revealed a high genetic heterogeneity among the isolates, and multi-clonal dissemination. CONCLUSION: The accumulation of genetic resistance determinants underscores the necessity for stringent infection control measures and robust antimicrobial stewardship programs to curb multidrug-resistant strains.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , COVID-19 , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Centros de Atenção Terciária , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Brasil , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Farmacorresistência Bacteriana/genética
20.
Vet World ; 17(4): 880-887, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38798292

RESUMO

Background and Aim: Established antimicrobial resistance (AMR) surveillance in companion animals is lacking, particularly in low-middle-income countries. The aim of this study was to analyze AMR and its risk factors in Escherichia coli isolated from dogs at two veterinary centers in Lima (Peru). Materials and Methods: Ninety dogs were included in the study. Antimicrobial susceptibility was established by disk diffusion, whereas microdilution was used to determine colistin susceptibility. Mechanisms related to extended-spectrum ß-lactamases (ESBL) and colistin resistance were determined by polymerase chain reaction. Clonal relationships of colistin-resistant isolates were assessed by XbaI-pulsed-field gel electrophoresis. Results: Thirty-five E. coli strains were isolated. High levels of resistance to ampicillin (57.1%), nalidixic acid (54.3%), tetracycline (48.6%), and azithromycin (25.7%) were detected. Cephalosporin resistance levels were ≥20% and those for colistin were 14.3%. Twelve (34.2%) isolates were ESBL producers; of these, six blaCTX-M-55 (50.0%), 2 (16.6%) blaCTX-M-15, and 2 (16.6%) blaCTX-M-8-like genes were found. The five colistin-resistant isolates were clonally unrelated, with four of them presenting amino acid codon substitutions in the mgrB gene (V8A) or mutations in the mgrB promoter (a12g, g98t, and c89t). Furthermore, dog age, <6 years (p = 0.027) and raw diet (p = 0.054) were associated with resistance to a greater number of antibiotic families. Conclusion: Despite small number of samples included, the study found that dogs studied were carriers of multidrug-resistant E. coli, including last-resort antimicrobials, representing a public health problem due to close contact between dogs and humans. This issue suggests the need for larger studies addressed to design strategies to prevent the spread of resistant micro-organisms in small animal clinics and domestic settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...