Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771934

RESUMO

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Assuntos
Carica , Colletotrichum , Eugenol , Fungicidas Industriais , Simulação de Acoplamento Molecular , Doenças das Plantas , Triazóis , Colletotrichum/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/química , Carica/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Relação Estrutura-Atividade , Desenho de Fármacos , Proteínas Fúngicas/química , Estrutura Molecular
2.
J Mol Model ; 30(6): 183, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38782773

RESUMO

CONTEXT: The activation of C-H bonds is a fundamental process in synthetic organic chemistry, which enables their replacement by highly reactive functional groups. Coordination compounds serve as effective catalysts for this purpose, as they facilitate chemical transformations by interacting with C-H bonds. A comprehensive understanding of the mechanism of activation of this type of bond lays the foundation for the development of efficient protocols for cross-coupling reactions. We explored the activation of C(sp2)-H bonds in 1-Phenyl-4-vinyl-1H-1,2,3-triazole derivatives with CH3, OCH3, and NO2 substituents in the para position of the phenyl ring, using palladium acetate as catalyst. The studied reaction is the first step for subsequent conjugation of the triazoles with naphthoquinones in a Heck-type reaction to create a C-C bond. The basic nitrogen atoms of the 1,2,3-triazole coordinate preferentially with the cationic palladium center to form an activated species. A concerted proton transfer from the terminal vinyl carbon to one of the acetate ligands with low activation energy is the main step for the C(sp2)-H activation. This study offers significant mechanistic insights for enhancing the effectiveness of C(sp2)-H activation protocols in organic synthesis. METHODS: All calculations were performed using the Gaussian 09 software package and density functional theory (DFT). The structures of all reaction path components were fully optimized using the CAM-B3LYP functional with the Def2-SVP basis set. The optimized geometries were analyzed by computing the second-order Hessian matrix to confirm that the corresponding minimum or transition state was located. To account for solvent effects, the Polarizable Continuum Model of the Integral Equation Formalism (IEFPCM) with water as the solvent was used.

3.
Arch Pharm (Weinheim) ; 357(2): e2300560, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032154

RESUMO

Tuberculosis (TB) disease, caused by Mycobacterium tuberculosis (Mtb) is the leading cause of death among people with human immunodeficiency virus (HIV) infection. No dual-target drug is currently being used to simultaneously treat both infections. This work aimed to obtain new multitarget HIV-TB agents, with the goal of optimizing treatments and preventing this coinfection. These compounds incorporate the structural features of azaaurones as anti-Mtb and zidovudine (AZT) as the antiretroviral moiety. The azaaurone scaffold displayed submicromolar activities against Mtb, and AZT is a potent antiretroviral drug. Six derivatives were synthetically generated, and five were evaluated against both infective agents. Evaluations of anti-HIV activity were carried out in HIV-1-infected MT-4 cells and on endogenous HIV-1 reverse transcriptase (RT) activity. The H37Rv strain was used for anti-Mtb assessments. Most compounds displayed potent antitubercular and moderate anti-HIV activity. (E)-12 exhibited a promising multitarget profile with an MIC90 of 2.82 µM and an IC50 of 1.98 µM in HIV-1-infected T lymphocyte cells, with an 84% inhibition of RT activity. Therefore, (E)-12 could be the first promising compound from a family of multitarget agents used to treat HIV-TB coinfection. In addition, the compound could offer a prototype for the development of new strategies in scientific research to treat this global health issue.


Assuntos
Benzofuranos , Coinfecção , Infecções por HIV , HIV-1 , Mycobacterium tuberculosis , Tuberculose , Humanos , Coinfecção/tratamento farmacológico , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Antituberculosos/farmacologia , Antituberculosos/química , Infecções por HIV/tratamento farmacológico , Antirretrovirais/farmacologia
4.
Future Med Chem ; 16(2): 139-155, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38131191

RESUMO

Aim: The assessment of the antileishmanial potential of 22 vanillin-containing 1,2,3-triazole derivatives against Leishmania braziliensis is reported. Materials & methods: Initial screening was performed against the parasite promastigote form. The most active compound, 4b, targeted parasites within amastigotes (IC50 = 4.2 ± 1.0 µmol l-1), presenting low cytotoxicity and a selective index value of 39. 4D quantitative structure-activity relationship and molecular docking studies provided insights into structure-activity and biological effects. Conclusion: A vanillin derivative with significant antileishmanial activity was identified. Enhanced activity was linked to increased electrostatic and Van der Waals interactions near the benzyl ring of the derivatives. Molecular docking indicated the inhibition of the Leishmania amazonensis sterol 14α-demethylase, using Leishmania infantum sterol 14α-demethylase as a model, without affecting the human isoform. Inhibition was active site competition with lanosterol.


Assuntos
Antiprotozoários , Benzaldeídos , Relação Quantitativa Estrutura-Atividade , Humanos , Simulação de Acoplamento Molecular , Antiprotozoários/farmacologia , Antiprotozoários/química , Triazóis/farmacologia , Esteróis , Relação Estrutura-Atividade
5.
Biomedicines ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371806

RESUMO

Oral squamous cell carcinoma (OSCC) represents ~90% of all oral cancers, being the eighth most common cancer in men. The overall 5-year survival rate is only 39% for metastatic cancers, and currently used chemotherapeutics can cause important side effects. Thus, there is an urgency in developing new and effective anti-cancer agents. As both chalcones and 1,2,3-triazoles are valuable pharmacophores/privileged structures in the search for anticancer compounds, in this work, new 1,2,3-triazole-chalcone hybrids were synthesized and evaluated against oral squamous cell carcinoma. By using different in silico, in vitro, and in vivo approaches, we demonstrated that compound 1f has great cytotoxicity and selectivity against OSCC (higher than carboplatin and doxorubicin) and other cancer cells in addition to showing minimal toxicity in mice. Furthermore, we demonstrate that induced cell death occurs by apoptosis and cell cycle arrest at the G2/M phase. Moreover, we found that 1f has a potential affinity for MDM2 protein, similar to the known ligand nutlin-3, and presents a better selectivity, pharmacological profile, and potential to be orally absorbed and is not a substrate of Pg-P when compared to nutlin-3. Therefore, we conclude that 1f is a good lead for a new chemotherapeutic drug against OSCC and possibly other types of cancers.

6.
Eur J Med Chem ; 255: 115400, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130472

RESUMO

Malaria can be caused by several Plasmodium species and the development of an effective vaccine is challenging. Currently, the most effective tool to control the disease is the administration of specific chemotherapy; however, resistance to the frontline antimalarials is one of the major problems in malaria control and thus the development of new drugs becomes urgent. The study presented here sought to evaluate the antimalarial activities of compounds derived from 2-amino-1,4-naphthoquinones containing 1,2,3-triazole using in vivo and in vitro models. 1H-1,2,3-Triazole 2-amino-1,4-naphthoquinone derivatives were synthesized and evaluated for antimalarial activity in vitro, using P. falciparum W2 chloroquine (CQ) resistant strain and in vivo using the murine-P. berghei ANKA strain. Acute toxicity was determined as established by the OECD (2001). Cytotoxicity was evaluated against HepG2 and Vero mammalian cell lines. Transmission electron microscopy of the Plasmodium falciparum trophozoite (early and late stages) was used to evaluate the action of compounds derived at ultra-structural level. The compounds displayed low cytotoxicity CC50 > 100 µM, neither did they cause hemolysis at the tested doses and nor the signs of toxicity in the in vivo acute toxicity test. Among the five compounds tested, one showed IC50 values in submicromolar range of 0.8 µM. Compounds 7, 8 and 11 showed IC50 values < 5 µM, and selectivity index (SI) ranging from 6.8 to 343 for HepG2, and from 13.7 to 494.8 for Vero cells. Compounds 8 and 11 were partially active against P. berghei induced parasitemia in vivo. Analysis of the ultrastructural changes associated with the treatment of these two compounds, showed trophozoites with completely degraded cytoplasm, loss of membrane integrity, organelles in the decomposition stage and possible food vacuole deterioration. Our results indicated that compounds 8 and 11 may be considered hit molecules for antimalarial drug discovery platform and deserve further optimization studies.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Naftoquinonas , Chlorocebus aethiops , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/química , Naftoquinonas/química , Células Vero , Triazóis/farmacologia , Triazóis/uso terapêutico , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei , Mamíferos
7.
J Agric Food Chem ; 71(18): 6818-6829, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37104821

RESUMO

In agriculture, the control of fungal infections is essential to improve crop quality and productivity. This study describes the preparation and fungicidal activity evaluation of 12 glycerol derivatives bearing 1,2,3-triazole fragments. The derivatives were prepared from glycerol in four steps. The key step corresponded to the Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction between the azide 4-(azidomethyl)-2,2-dimethyl-1,3-dioxolane (3) and different terminal alkynes (57-91% yield). The compounds were characterized by infrared spectroscopy, nuclear magnetic resonance (1H and 13C), and high-resolution mass spectrometry. The in vitro assessment of the compounds on Asperisporium caricae, that is, the etiological agent of papaya black spot, at 750 mg L-1 showed that the glycerol derivatives significantly inhibited conidial germination with different degrees of efficacy. The most active compound 4-(3-chlorophenyl)-1-((2,2-dimethyl-1,3-dioxolan-4-yl) methyl)-1H-1,2,3-triazole (4c) presented a 91.92% inhibition. In vivo assays revealed that 4c reduced the final severity (70.7%) and area under the disease severity progress curve of black spots on papaya fruits 10 days after inoculation. The glycerol-bearing 1,2,3-triazole derivatives also present agrochemical-likeness properties. Our in silico study using molecular docking calculations show that all triazole derivatives bind favorably to the sterol 14α-demethylase (CYP51) active site at the same region of the substrate lanosterol (LAN) and fungicide propiconazole (PRO). Thus, the mechanism of action of the compounds 4a-4l may be the same as the fungicide PRO, blocking the entrance/approximation of the LAN into the CYP51 active site by steric effects. The reported results point to the fact that the glycerol derivatives may represent a scaffold to be explored for the development of new chemical agents to control papaya black spot.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/farmacologia , Álcoois de Trioses de Açúcar , Glicerol , Simulação de Acoplamento Molecular , Azidas/química , Triazóis/química
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122526, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868019

RESUMO

A series of amino acid-derived 1,2,3-triazoles presenting the amino acid residue and the benzazole fluorophore connected by a triazole-4-carboxylate spacer was studied for enantioselective recognition using only steady-state fluorescence spectroscopy in solution. In this investigation, the optical sensing was performed with D-(-) and L-(+)-Arabinose and (R)-(-) and (S)-(+)-Mandelic acid as chiral analytes. The optical sensors showed specific interactions with each pair of enantiomers, allowing photophysical responses, which were used for their enantioselective recognition. DFT calculations confirm the specific interaction between the fluorophores and the analytes corroborating the observed high enantioselectivity of these compounds with the studied enantiomers. Finally, this study investigated nontrivial sensors for chiral molecules by a mechanism different than turn-on fluorescence and has the potential to broad chiral compounds with fluorophoric units as optical sensors for enantioselective sensing.

9.
Z Naturforsch C J Biosci ; 77(11-12): 459-471, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35767726

RESUMO

Snakebite envenoming is a health concern and has been a neglected tropical disease since 2017, according to the World Health Organization. In this study, we evaluated the ability of ten 1,2,3-triazole derivatives AM001 to AM010 to inhibit pertinent in vitro (coagulant, hemolytic, and proteolytic) and in vivo (hemorrhagic, edematogenic, and lethal) activities of Bothrops jararaca venom. The derivatives were synthesized, and had their molecular structures fully characterized by CHN element analysis, Fourier-transform infrared spectroscopy and Nuclear magnetic resonance. The derivatives were incubated with the B. jararaca venom (incubation protocol) or administered before (prevention protocol) or after (treatment protocol) the injection of B. jararaca venom into the animals. Briefly, the derivatives were able to inhibit the main toxic effects triggered by B. jararaca venom, though with varying efficacies, and they were devoid of toxicity through in vivo, in silico or in vitro analyses. However, it seemed that the derivatives AM006 or AM010 inhibited more efficiently hemorrhage or lethality, respectively. The derivatives were nontoxic. Therefore, the 1,2,3-triazole derivatives may be useful as an adjuvant to more efficiently treat the local toxic effects caused by B. jararaca envenoming.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Venenos de Crotalídeos/química , Antivenenos/farmacologia , Triazóis , Hemorragia , Relação Estrutura-Atividade
10.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35337107

RESUMO

Imatinib (IMT) is the first-in-class BCR-ABL commercial tyrosine kinase inhibitor (TKI). However, the resistance and toxicity associated with the use of IMT highlight the importance of the search for new TKIs. In this context, heterocyclic systems, such as quinoline, which is present as a pharmacophore in the structure of the TKI inhibitor bosutinib (BST), have been widely applied. Thus, this work aimed to obtain new hybrids of imatinib containing quinoline moieties and evaluate them against K562 cells. The compounds were synthesized with a high purity degree. Among the produced molecules, the inhibitor 4-methyl-N3-(4-(pyridin-3-yl)pyrimidin-2-yl)-N1-(quinolin-4-yl)benzene-1,3-diamine (2g) showed a suitable reduction in cell viability, with a CC50 value of 0.9 µM (IMT, CC50 = 0.08 µM). Molecular docking results suggest that the interaction between the most active inhibitor 2g and the BCR-ABL1 enzyme occurs at the bosutinib binding site through a competitive inhibition mechanism. Despite being less potent and selective than IMT, 2g is a suitable prototype for use in the search for new drugs against chronic myeloid leukemia (CML), especially in patients with acquired resistance to IMT.

11.
Med Chem ; 18(6): 701-709, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784878

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the top ten causes of death worldwide, while Chagas disease (CD) is the parasitic disease that kills the largest number of people in the Americas. TB is the leading cause of death for patients with AIDS; it kills 1.5 million people and causes 10 million new cases every year. The lack of newly developed chemotherapeutic agents and insufficient access to health care services for a diagnosis increase the incidence of multidrug-resistant TB (MDRTB) cases. Although CD was identified in 1909, the chronic stages of the disease still lack adequate treatment. OBJECTIVE: The purpose of this work was to design and synthesize two new series of 2-nitroimidazole 5a-e and imidazooxazoles 6a-e with 1H-1,2,3-triazolil nucleus and evaluate their activities against Tc and Mycobacterium tuberculosis (Mtb). METHODS: Two series of five compounds were synthesized in a 3 or 4-step route in moderated yields, and their structures were confirmed by NMR spectral data analyses. The in vitro antitrypanosomal evaluation of products was carried out in an intracellular model using L929 cell line infected with trypomastigotes and amastigote forms of Tc of ß-galactosidase-transfected Tulahuen strain. Their antimycobacterial activity was evaluated against Mtb strain H37Rv. RESULTS: In general, 2-nitroimidazolic derivatives proved to be more potent in regard to antitrypanocidal and antimycobacterial activity. The non-cytotoxic 2-nitroimidazole derivative 5b was the most promising with a half maximum inhibitory concentration of 3.2 µM against Tc and a minimum inhibitory concentration of 65.3 µM against Mtb. CONCLUSION: Our study reinforced the importance of 2-nitroimidazole and 1H-1,2,3-triazole nuclei in antimicrobial activity. In addition, derivative 5b proved to be the most promising, presenting important activity against Tc and Mtb and could be used as a starting point for the development of new agents against these diseases.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Trypanosoma cruzi , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Nitroimidazóis/farmacologia
12.
Braz. J. Pharm. Sci. (Online) ; 58: e201143, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420361

RESUMO

Abstract Snake envenomation is a public health problem, and while serum therapy prevents death, the local effects of venoms can lead to amputations or morbidities. Thus, alternative treatments deserve attention. In this study, we tested eight derivatives of 1,2,3-triazole against some toxic activities of Bothrops jararaca venom. The derivatives were synthesized, and their structures analyzed by infrared and nuclear magnetic resonance. After that, the ability of compounds to inhibit hemolysis, coagulation, proteolysis, hemorrhaging, edema, and lethal activities of B. jararaca venom was investigated. The derivatives were incubated with B. jararaca venom (incubation protocol), administered before (prevention protocol) or after (treatment protocol) injecting venom into the mice. Then, hemorrhaging assay occurred. As a result, most of the derivatives inhibited the activities, even if they were incubated, injected before or after B. jararaca venom. However, the derivatives TRI 07 and TRI 18 seemed to be the most efficient in impairing hemorrhaging. The derivatives showed a low drug score of toxicity based on an in silico technique. Therefore, the derivatives fulfilled physicochemical and biological requirements to become drugs, and they may be a brand new initiative for designing antivenom molecules to complement antivenom therapy to efficiently block tissue necrosis or any other local effects.

13.
Beilstein J Org Chem ; 17: 2260-2269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621389

RESUMO

The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 µM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.

14.
Eur J Med Chem ; 220: 113472, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33940463

RESUMO

A total of forty-three compounds were synthesized, including thirty-two new ones. Among those compounds, seventeen were selected and tested on human tumor cell lines: PC-3 (prostate adenocarcinoma), HCT-116 (colorectal tumor), NCIH-460 (lung carcinoma), SKMEL-103 (melanoma) and AGP-01 (gastric tumor). Alkynylated 1,2,4-oxadiazoles 2m, 3g and 3k exhibited antiproliferative activities against NCIH-460 in culture. Alkynylated N-cyclohexyl-1,2,4-oxadiazoles 3a-m and bis-heterocycle glucoglycero-1,2,3-triazole-N-cyclohexyl-1,2,4-oxadiazole derivatives 5a-k and 6-11 were evaluated for their in vitro efficacy towards Mycobacterium tuberculosis (Mtb) H37Ra and H37Rv strains. In general, glycerosugars conjugated to 1,2,4-oxadiazole via a 1,2,3-triazole linkage (5a, 5e, 5j, 5k, and 7) showed in vitro inhibitory activity against Mtb (H37Rv). The largest molecules bis-triazoles 10 and 11, proved inactive against TB. Probably, the absence of the N-cyclohexyl group in compound 8 and 1,2,4-oxadiazole nucleus in compound 9 were responsible for its low activity. Glucoglycero-triazole-oxadiazole derivatives 5e (10 µM) and 7 (23.9 µM) were the most promising antitubercular compounds, showing a better selective index than when tested against RAW 264.7 and HepG2 cells. Vero cell were used to investigate cytotoxicity of compounds 5a, 5h, 5j, 5k, and these compounds showed good cell viability. Further, in silico studies were performed for most active compounds (5e and 7) with potential drug targets, DprE1 and InhA of Mtb to understand possible interactions aided with molecular dynamic simulation (100ns).


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Glicoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Oxidiazóis/química , Alcinos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antituberculosos/síntese química , Antituberculosos/química , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Descoberta de Drogas , Glicoconjugados/síntese química , Glicoconjugados/química , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
15.
Mol Divers ; 25(4): 2035-2043, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32377993

RESUMO

HSV disease is distributed worldwide. Anti-herpesvirus drugs are a problem in clinical settings, particularly in immunocompromised individuals undergoing herpes simplex virus type 1 infection. In this work, 4-substituted-1,2,3-1H-1,2,3-triazole linked nitroxyl radical derived from TEMPOL were synthesized, and their ability to inhibit the in vitro replication of HSV-1 was evaluated. The nitroxide derivatives were characterized by infrared spectroscopy and elemental analysis, and three of them had their crystal structures determined by single-crystal X-ray diffraction. Four hybrid molecules showed important anti-HSV-1 activity with IC50 values ranged from 0.80 to 1.32 µM. In particular, one of the nitroxide derivatives was more active than Acyclovir (IC50 = 0.99 µM). All compounds tested were more selective inhibitors than the reference antiviral drug. Among them, two compounds were 4.5 (IC50 0.80 µM; selectivity index CC50/IC50 3886) and 7.7 times (IC50 1.10 µM; selectivity index CC50/IC50 6698) more selective than acyclovir (IC50 0.99 µM; selectivity index CC50/IC50: 869). These nitroxide derivatives may be elected as leading compounds due to their antiherpetic activities and good selectivity.


Assuntos
Herpesvirus Humano 1
16.
Bioorg Chem ; 105: 104437, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33339081

RESUMO

Organic compounds obtained by click chemistry reactions have demonstrated a broad spectrum of biological activities being widely applied for the development of molecules against pathogens of medical and veterinary importance. Cutaneous leishmaniasis (CL), caused by intracellular protozoa parasite of genus Leishmania, comprises a complex of clinical manifestations that affect the skin and mucous membranes. The available drugs for the treatment are toxic and costly, with long periods of treatment, and the emergence of resistant strains has been reported. In this study we investigated the in vitro effects of a phthalimide-1,2,3-triazole derivative, the 4-Phenyl-1-[2-(phthalimido-2-yl)ethyl]-1H-1,2,3-triazole (PT4) obtained by click chemistry, on mammalian cells and on L. amazonensis and L. braziliensis, the causative agents of CL in Brazil. In silico ADMET evaluation of PT4 showed that this molecule has good pharmacokinetic properties with no violation of Lipinski's rules. The in vitro assays showed that PT4 was more selective for both Leishmania species than to mammalian cells. This compound also presented low cytotoxicity to mammalian cells with CC50 > 500 µM. Treatment of promastigote forms with different concentrations of PT4 resulted in ultrastructural alterations, such as plasma membrane wrinkling, shortening of cell body, increased cell volume and cell rupture. The molecular dynamic simulations showed that PT4 interacts with Lanosterol 14 α-demethylase from Leishmania, an essential enzyme of lipid synthesis pathway in this parasite. Our results demonstrated PT4 was effective against both species of Leishmania. PT4 caused a decrease of mitochondrial membrane potential and increased production of reactive oxygen species, which may lead to parasite death. Taken together, our results pointed PT4 as promissing therapeutic agent against CL.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Triazóis/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Testes de Sensibilidade Parasitária , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
17.
R Soc Open Sci ; 7(7): 200290, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32874626

RESUMO

A series of carbohydrate-linked 1,2,3-triazole derivatives were synthesized in good yields from glucofuranose and allofuranose diacetonides using as key step a three-component 1,3-dipolar azide-alkyne cycloaddition catalysed by a Cu-Al mixed oxide. In this multi-component reaction, Cu-Al mixed oxide/sodium ascorbate system serves as a highly reactive, recyclable and efficient heterogeneous catalyst for the regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles. The reported protocol has significant advantages over classical CuI/N,N-diisopropylethylamine (DIPEA) or CuSO4/sodium ascorbate conditions in terms of efficiency and reduced synthetic complexity. In addition, the selective deprotection of synthesized di-O-isopropylidene derivatives was also carried out leading to the corresponding mono-O-isopropylidene products in moderate yields. Some of the synthesized triazole glycoconjugates were tested for their in vitro antimicrobial activity using the disc diffusion method against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), as well as fungus (Aspergillus niger) and yeast (Candida utilis). The results revealed that these compounds exhibit moderate to good antimicrobial activity mainly against Gram-negative bacteria.

18.
ChemMedChem ; 15(21): 2019-2028, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32729242

RESUMO

Chagas disease affects 6-8 million people worldwide, remaining a public health concern. Toxicity, several adverse effects and inefficiency in the chronic stage of the disease are the major challenges regarding the available treatment protocols. This work involved the synthesis of twenty-two 1,4-disubstituted-1,2,3-triazole analogues of benznidazole (BZN), by using a click chemistry strategy. Analogues were obtained in moderate to good yields (40-97 %). Antitrypanosomal activity was evaluated against the amastigote forms of Trypanosoma cruzi. Compound 8 a (4-(2-nitro-1H-imidazol-1-yl)methyl)-1-phenyl-1H-1,2,3-triazole) without substituents on phenyl ring showed similar biological activity to BZN (IC50 =3.0 µM, SI>65.3), with an IC50 =3.1 µM and SI>64.5. Compound 8 o (3,4-di-OCH3 -Ph) with IC50 = 0.65 µM was five-fold more active than BZN, and showed an excellent selectivity index (SI>307.7). Compound 8 v (3-NO2 , 4-CH3 -Ph) with IC50 =1.2 µM and relevant SI>166.7, also exhibited higher activity than BZN. SAR analysis exhibited a pattern regarding antitrypanosomal activity relative to BZN, in compounds with electron-withdrawing groups (Hammett σ+) at position 3, and electron-donating groups (Hammett σ-) at position 4, as observed in 8 o and 8 v. Further research might explore in vivo antitrypanosomal activity of promising analogues 8 a, 8 o, and 8 v. Overall, this study indicates that approaches such as the bioisosteric replacement of amide group by 1,2,3-triazole ring, the use of click chemistry as a synthesis strategy, and design tools like Craig-plot and Topliss tree are promising alternatives to drug discovery.


Assuntos
Nitroimidazóis/farmacologia , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Células Cultivadas , Macaca mulatta , Estrutura Molecular , Nitroimidazóis/química , Testes de Sensibilidade Parasitária , Triazóis/síntese química , Triazóis/química , Tripanossomicidas/síntese química , Tripanossomicidas/química
19.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 7): 1051-1056, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32695451

RESUMO

The title compound, C20H20N4O3, is constructed about a tri-substituted 1,2,3-triazole ring, with the substituent at one C atom flanked by the C and N atoms being a substituted amide group, and with the adjacent C and N atoms bearing phenyl and benzyl groups, respectively; the dihedral angle between the pendant phenyl rings is 81.17 (12)°, indicative of an almost orthogonal disposition. In the crystal, pairwise amide-N-H⋯O(carbon-yl) hydrogen bonds lead to a centrosymmetric dimer incorporating methyl-ene-C-H⋯π(benzene) inter-actions. The dimers are linked into a supra-molecular layer in the ab plane via methyl-ene-C-H⋯N(azo) and benzene-C-H⋯O(amide) inter-actions; the layers stack along the c-axis direction without directional inter-actions between them. The above-mentioned inter-molecular contacts are apparent in the analysis of the calculated Hirshfeld surface, which also provides evidence for short inter-layer H⋯C contacts with a significant dispersion energy contribution.

20.
Molecules ; 25(3)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979319

RESUMO

The coagulation cascade is the process of the conversion of soluble fibrinogen to insoluble fibrin that terminates in production of a clot. Factor Xa (FXa) is a serine protease involved in the blood coagulation cascade. Moreover, FXa plays a vital role in the enzymatic sequence which ends with the thrombus production. Thrombosis is a common causal pathology for three widespread cardiovascular syndromes: acute coronary syndrome (ACS), venous thromboembolism (VTE), and strokes. In this research a series of N-propargyltetrahydroquinoline and 1,2,3-triazole derivatives as a potential factor Xa (FXa) inhibitor were designed, synthesized, and evaluated for their FXa inhibitor activity, cytotoxicity activity and coagulation parameters. Rational design for the desired novel molecules was performed through protein-ligand complexes selection and ligand clustering. The microwave-assisted synthetic strategy of selected compounds was carried out by using Ullmann-Goldberg, N-propargylation, Mannich addition, Friedel-Crafts, and 1,3-dipolar cycloaddition type reactions under microwave irradiation. The microwave methodology proved to be an efficient way to obtain all novel compounds in high yields (73-93%). Furthermore, a thermochemical analysis, optimization and reactivity indexes such as electronic chemical potential (µ), chemical hardness (η), and electrophilicity (ω) were performed to understand the relationship between the structure and the energetic behavior of all the series. Then, in vitro analysis showed that compounds 27, 29-31, and 34 exhibited inhibitory activity against FXa and the corresponding half maximal inhibitory concentration (IC50) values were calculated. Next, a cell viability assay in HEK293 and HepG2 cell lines, and coagulation parameters (anti FXa, Prothrombin time (PT), activated Partial Thromboplastin Time (aPTT)) of the most active novel molecules were performed to determine the corresponding cytotoxicity and possible action on clotting pathways. The obtained results suggest that compounds 27 and 29 inhibited FXa targeting through coagulation factors in the intrinsic and extrinsic pathways. However, compound 34 may target coagulation FXa mainly by the extrinsic and common pathway. Interestingly, the most active compounds in relation to the inhibition activity against FXa and coagulation parameters did not show toxicity at the performed coagulation assay concentrations. Finally, docking studies confirmed the preferential binding mode of N-propargyltetrahydroquinoline and 1,2,3-triazole derivatives inside the active site of FXa.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Inibidores do Fator Xa/síntese química , Inibidores do Fator Xa/farmacologia , Fator Xa/química , Quinolinas/química , Triazóis/química , Compostos de Anilina/síntese química , Compostos de Anilina/química , Azidas/síntese química , Azidas/química , Testes de Coagulação Sanguínea , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Fator Xa/metabolismo , Inibidores do Fator Xa/química , Humanos , Concentração Inibidora 50 , Ligantes , Micro-Ondas , Simulação de Acoplamento Molecular , Quinolinas/síntese química , Triazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA