Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Med ; 13(4): e7074, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38457215

RESUMO

BACKGROUND: The post-remission therapy (PRT) choices for adult t(8;21) acute myeloid leukemia (AML) in first complete remission (CR1) need to be further explored. AIMS: We aimed to investigate the impact of measurable residual disease (MRD) combined with CD19 on PRT choices for adult t(8;21) AML in CR1. METHODS: A total of 150 t(8;21) AML patients were enrolled, including 67 underwent chemotherapy (CMT) and 83 allogeneic hematopoietic stem cell transplantation (allo-SCT) as PRT in CR1. Subgroup analyses were performed according to MRD level after three cycles of chemotherapy combined with CD19 expression. RESULTS: Multivariate analysis indicated MRDhigh after three courses of treatment (HR, 0.14 [95% CI, 0.03-0.66]; p = 0.013) and CD19 negativity (HR, 0.14 [95% CI, 0.02-0.96]; p = 0.045) were risk factors for relapse, while allo-SCT was protective factor for relapse (HR, 0.34 [95% CI, 0.15-0.75]; p = 0.008). Grouped by MRD after three courses of chemotherapy, allo-SCT had lower CIR (p < 0.001) and better OS (p = 0.003) than CMT for MRDhigh patients, CMT showed a higher CIR (35.99% vs. 15.34%, p = 0.100) but comparable OS (p = 0.588) than allo-SCT for MRDlow patients. Grouped by CD19 expression, allo-SCT demonstrated lower CIR (p < 0.001) and better OS (p = 0.002) than CMT for CD19- patients. CMT had a higher CIR (41.37% vs. 10.48%, p = 0.007) but comparable OS (p = 0.147) than allo-SCT for CD19+ patients. Grouped by MRD combined with CD19, MRDhigh /CD19+ subsets were identified out of CD19+ patients benefiting from allo-SCT with lower CIR (p = 0.002) and superior OS (p = 0.020) than CMT. CMT preserved comparable CIR (p = 0.939) and OS (p = 0.658) with allo-SCT for MRDlow /CD19+ patients. MRDlow /CD19- subsets were also identified from MRDlow patients requiring allo-SCT with lower CIR (p < 0.001) and superior OS (p = 0.008) than CMT. Allo-SCT maintained lower CIR (p < 0.001) and superior OS (p = 0.008) than CMT for MRDhigh /CD19- patients. CONCLUSIONS: MRD combined with CD19 might optimize PRT choices for adult t(8;21) AML patients in CR1.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Transplante Homólogo , Transplante de Células-Tronco , Recidiva , Resposta Patológica Completa , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Neoplasia Residual , Estudos Retrospectivos , Prognóstico
2.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461410

RESUMO

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , Resposta Patológica Completa , Prognóstico , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas Proto-Oncogênicas c-kit/genética
3.
Acta Pharmacol Sin ; 45(3): 633-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017299

RESUMO

Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Diterpenos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Translocação Genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
5.
Front Immunol ; 13: 909104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874754

RESUMO

Background: Acute myeloid leukemia (AML) with t(8;21) needs to be further stratified. In addition to leukemia cells, immune cells in tumor microenvironment participate in tumor initiation, growth and progression. Interleukins (ILs)/interleukin receptors (ILRs) interaction plays important roles in the antitumor immune response. IL7R is reported to be relevant to prognosis in solid tumor and acute lymphoblastic leukemia. However, the prognostic significance of IL7R in t(8;21) AML remains to be clarified. Methods: Bone marrows collected from 156 newly diagnosed t(8;21) AML patients were used for testing IL7R transcript level by TaqMan-based real-time quantitative PCR (RQ-PCR), and RNAseq were performed in 15 of them. Moreover, IL7R expression at diagnosis were measured by RQ-PCR and flow cytometry (FCM) simultaneously in other 13 t(8;21) AML patients. Results: t(8;21) AML patients had varied IL7R transcript levels and were categorized into low-expression (IL7R-L) and high-expression (IL7R-H) groups; IL7R-L was significantly associated with a lower relapse-free survival (RFS) rate (P=0.0027) and KITD816/D820 mutation (P=0.0010). Furthermore, IL7R-L was associated with a lower RFS rate in KITD816/D820 group (P=0.013) and IL7R-H/KITD816/D820 patients had similar RFS to KITN822/e8/WT patients (P=0.35). GO analysis enrichment showed that down-regulated genes were predominantly involved in the regulation of T cell and leukocyte activation, proliferation and differentiation in IL7R-L group. IL7R-L had significantly lower levels of Granzymes A/B, CCR7, CD28 and CD27 than IL7R-H group (all P<0.05). FCM analysis showed IL7R protein was primarily expressed in CD4+ T and CD8+ T cell subset. A significant association was found between the transcript level of IL7R and the percentage of CD8+ T cells in nucleated cells (P=0.015) but not CD4+ T cells (P=0.47). Conclusion: Low IL7R transcript level of bone marrow at diagnosis predicted relapse in t(8;21) AML, which might be caused by the difference in the amount, status and function of T cells.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Linfócitos T CD8-Positivos , Leucemia Mieloide Aguda , Adulto , Linfócitos T CD8-Positivos/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Prognóstico , Regiões Promotoras Genéticas , Recidiva , Microambiente Tumoral
6.
Cell Rep ; 38(10): 110481, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263585

RESUMO

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Linhagem Celular Tumoral , Autorrenovação Celular/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/patologia , MicroRNAs/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
7.
BBA Adv ; 2: 100047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082605

RESUMO

The fusion protein RUNX1-ETO is an oncogenic transcription factor generated by t(8;21) chromosome translocation, which is found in FAB-M2-type acute myeloid leukemia (AML). RUNX1-ETO is known to dysregulate the normal RUNX1 transcriptional network, which should involve essential factors for the onset of AML with t(8;21). In this study, we screened for possible transcriptional targets of RUNX1 by reanalysis of public data in silico, and identified C11orf21 as a novel RUNX1 target gene because its expression was down-regulated in the presence of RUNX1-ETO. The expression level of C11orf21 was low in AML patient samples with t(8;21) and in Kasumi-1 cells, which carry RUNX1-ETO. Knockdown of RUNX1-ETO in Kasumi-1 cells restored C11orf21 expression, whereas overexpression of RUNX1 up-regulated C11orf21 expression. In addition, knockdown of RUNX1 in other human leukemia cells without RUNX-ETO, such as K562, led to a decrease in C11orf21 expression. Of note, the C11orf21 promoter sequence contains a consensus sequence for RUNX1 binding and it was activated by exogenously expressed RUNX1 based on our luciferase reporter assay. This luciferase signal was trans-dominantly suppressed by RUNX1-ETO and site-directed mutagenesis of the consensus site abrogated the reporter activity. This study demonstrated that C11orf21 is a novel transcriptional target of RUNX1 and RUNX1-ETO suppressed C11orf21 transcription in t(8;21) AML. Thus, through this in silico approach, we identified a novel transcriptional target of RUNX1, and the depletion of C11orf21, the target gene, may be associated with the onset of t(8;21) AML.

8.
Cell Rep ; 35(3): 109010, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882316

RESUMO

Acute myeloid leukemia (AML) is caused by recurrent mutations in members of the gene regulatory and signaling machinery that control hematopoietic progenitor cell growth and differentiation. Here, we show that the transcription factor WT1 forms a major node in the rewired mutation-specific gene regulatory networks of multiple AML subtypes. WT1 is frequently either mutated or upregulated in AML, and its expression is predictive for relapse. The WT1 protein exists as multiple isoforms. For two main AML subtypes, we demonstrate that these isoforms exhibit differential patterns of binding and support contrasting biological activities, including enhanced proliferation. We also show that WT1 responds to oncogenic signaling and is part of a signaling-responsive transcription factor hub that controls AML growth. WT1 therefore plays a central and widespread role in AML biology.


Assuntos
Cromatina/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Redes Reguladoras de Genes , Leucemia Mieloide Aguda/genética , Neoplasias Pulmonares/genética , Proteínas WT1/genética , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatina/metabolismo , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/classificação , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Translocação Genética , Proteínas WT1/antagonistas & inibidores , Proteínas WT1/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Leuk Lymphoma ; 61(5): 1168-1177, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31916883

RESUMO

The prognostic significance of loss of X chromosome (-X) in t(8;21) acute myeloid leukemia (AML) remains unclear. We evaluated the role of -X in 158 female patients with t(8;21) AML collected retrospectively from 15 Chinese AML study groups. Patients with -X accounted for 25.3% and showed a significantly higher complete remission rate, better 3-year cumulative incidence of relapse (25.2 vs. 50.5%, p = 0.013), relapse-free survival (69.4 vs. 44.7%, p = 0.025), and overall survival (77.4 vs. 52.7%, p = 0.026) compared with those without -X. Patients with -X were more likely to achieve minimal residual disease negativity (risk ratio = 1.62; p = 0.020). A Multivariate analysis adjusting for age, white blood cell, KIT-D816 mutation, high-dose cytarabine consolidation therapy, and allogeneic hematopoietic stem-cell transplantation showed -X to be an independent favorable prognostic factor. Our results suggest that -X may be associated with better outcomes in patients with t(8;21) AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Citarabina , Feminino , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Prognóstico , Indução de Remissão , Estudos Retrospectivos , Cromossomo X
10.
Leuk Lymphoma ; 61(4): 820-830, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724463

RESUMO

The prognostic significance of loss of the Y chromosome (LOY) in patients with t(8;21)(q22;q22) acute myeloid leukemia (AML) remains poorly understood. To investigate this issue, 226 younger adult male patients with t(8;21) AML from 15 Chinese hematology research centers were retrospectively evaluated, among which, 50.4% had LOY. In patients receiving high-dose cytarabine (HiDAC) consolidation therapy, LOY was associated with a significantly higher cumulative incidence of relapse (CIR, HR = 2.18, p = .048), worse relapse-free survival (RFS, HR = 2.39, p = .026), and worse but not significant overall survival (OS, HR = 2.71, p = .166). A multivariate analysis adjusted for age, WBC, KIT mutations, and minimal residual disease showed LOY to be an independent adverse prognostic factor for relapse in patients on HiDAC consolidation therapy. Our results suggest that LOY may be associated with a high relapse risk in t(8;21) AML patients receiving HiDAC therapy during consolidation.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Quimioterapia de Consolidação , Citarabina/uso terapêutico , Intervalo Livre de Doença , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Masculino , Recidiva , Estudos Retrospectivos , Cromossomo Y
11.
Zhonghua Xue Ye Xue Za Zhi ; 40(10): 831-836, 2019 Oct 14.
Artigo em Chinês | MEDLINE | ID: mdl-31775482

RESUMO

Objective: To investigate the characteristic and prognostic significance of leukemia stem cells associated antigens expressions including CD34, CD38, CD123, CD96 and TIM-3 in t (8;21) AML. Methods: Bone marrow samples of 47 t (8;21) AML patients were collected at diagnosis from October 2015 to April 2018 in Peking University Peoples' Hospital, then flow cytometry method was performed to detect the expression frequencies of CD34, CD38, CD123, CD96 and TIM-3 to analyze the relationship between leukemia stem cells associated antigens expressions and relapse. Results: Of 47 t (8;21) AML patients tested, the median percentages of CD34(+)CD38(-), CD34(+) CD38(-)CD123(+), CD34(+)CD38(-) CD96(+) and CD34(+) CD38(-) TIM-3(+) cells among nucleated cells were 2.37%, 0.24%, 0.27% and 0.06%, respectively. All the frequencies of CD34(+)CD38(-), CD34(+)CD38(-)CD123(+), CD34(+)CD38(-)CD96(+) and CD34(+) CD38(-)TIM-3(+) cells had no impact on the achievement of CR after the first course of induction. All higher frequencies of CD34(+)CD38(-), CD34(+)CD38(-)CD123(+), CD34(+)CD38(-)CD96(+) cells were related to higher 2-year CIR rate. Whereas, the frequency of CD34(+) CD38(-) TIM-3(+) cells had no impact on CIR rate. Both high frequency of CD34(+) CD38(-) cells and the high level of minimal residual diseases (patients with <3-log reduction in the RUNX1-RUNX1T1 transcript level after the second consolidation therapy) were independent poor prognostic factors of CIR[P=0.025, HR=6.9 (95%CI 1.3-37.4) ; P=0.031, HR=11.1 (95%CI 1.2-99.2) ]. Conclusion: Different leukemia stem cells associated antigens had distinct prognostic significance in t (8;21) AML. High frequencies of CD34(+) CD38(-), CD34(+) CD38(-) CD123(+) and CD34(+)CD38(-)CD96(+) cells at diagnosis predicted relapse in patients with t (8;21) AML.


Assuntos
Leucemia Mieloide Aguda , ADP-Ribosil Ciclase 1 , Antígenos CD , Citometria de Fluxo , Humanos , Subunidade alfa de Receptor de Interleucina-3 , Células-Tronco Neoplásicas , Prognóstico , Células-Tronco
12.
Front Med ; 13(3): 388-397, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30206768

RESUMO

Collaboration of c-KIT mutations with AML1-ETO (AE) has been demonstrated to induce t(8; 21) acute myeloid leukemia (AML). Targeted therapies designed to eliminate AE and c-KIT oncoproteins may facilitate effective treatment of t(8; 21) AML. Homoharringtonine (HHT) features activity against tumor cells harboring c-KIT mutations, whereas oridonin can induce t(8; 21) AML cell apoptosis and AE cleavage. Therefore, studies should explore the efficacy of combination therapy with oridonin and HHT in t(8; 21) AML. In this study, we investigated the synergistic effects and mechanism of oridonin combined with HHT in t(8; 21) AML cell line and mouse model. The two drugs synergistically inhibited cell viability and induced significant mitochondrial membrane potential loss and apoptosis. Oridonin and HHT induced significant downregulation of c-KIT and its downstream signaling pathways and promoted AE cleavage. HHT increased intracellular oridonin concentration by modulating the expressions of MRP1 and MDR1, thus enhancing the effects of oridonin. The combination of oridonin and HHT prolonged t(8; 21) leukemia mouse survival. In conclusion, oridonin and HHTexert synergistic effects against t(8; 21) leukemia in vivo and in vitro, thereby indicating that their combination may be an effective therapy for t(8; 21) leukemia.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Mepesuccinato de Omacetaxina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Translocação Genética , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Sinergismo Farmacológico , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Chinese Journal of Hematology ; (12): 831-836, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1012077

RESUMO

Objective: To investigate the characteristic and prognostic significance of leukemia stem cells associated antigens expressions including CD34, CD38, CD123, CD96 and TIM-3 in t (8;21) AML. Methods: Bone marrow samples of 47 t (8;21) AML patients were collected at diagnosis from October 2015 to April 2018 in Peking University Peoples' Hospital, then flow cytometry method was performed to detect the expression frequencies of CD34, CD38, CD123, CD96 and TIM-3 to analyze the relationship between leukemia stem cells associated antigens expressions and relapse. Results: Of 47 t (8;21) AML patients tested, the median percentages of CD34(+)CD38(-), CD34(+) CD38(-)CD123(+), CD34(+)CD38(-) CD96(+) and CD34(+) CD38(-) TIM-3(+) cells among nucleated cells were 2.37%, 0.24%, 0.27% and 0.06%, respectively. All the frequencies of CD34(+)CD38(-), CD34(+)CD38(-)CD123(+), CD34(+)CD38(-)CD96(+) and CD34(+) CD38(-)TIM-3(+) cells had no impact on the achievement of CR after the first course of induction. All higher frequencies of CD34(+)CD38(-), CD34(+)CD38(-)CD123(+), CD34(+)CD38(-)CD96(+) cells were related to higher 2-year CIR rate. Whereas, the frequency of CD34(+) CD38(-) TIM-3(+) cells had no impact on CIR rate. Both high frequency of CD34(+) CD38(-) cells and the high level of minimal residual diseases (patients with <3-log reduction in the RUNX1-RUNX1T1 transcript level after the second consolidation therapy) were independent poor prognostic factors of CIR[P=0.025, HR=6.9 (95%CI 1.3-37.4) ; P=0.031, HR=11.1 (95%CI 1.2-99.2) ]. Conclusion: Different leukemia stem cells associated antigens had distinct prognostic significance in t (8;21) AML. High frequencies of CD34(+) CD38(-), CD34(+) CD38(-) CD123(+) and CD34(+)CD38(-)CD96(+) cells at diagnosis predicted relapse in patients with t (8;21) AML.


Assuntos
Humanos , ADP-Ribosil Ciclase 1 , Antígenos CD , Citometria de Fluxo , Subunidade alfa de Receptor de Interleucina-3 , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , Prognóstico , Células-Tronco
14.
Chinese Journal of Hematology ; (12): 831-836, 2019.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-796972

RESUMO

Objective@#To investigate the characteristic and prognostic significance of leukemia stem cells associated antigens expressions including CD34, CD38, CD123, CD96 and TIM-3 in t (8;21) AML.@*Methods@#Bone marrow samples of 47 t (8;21) AML patients were collected at diagnosis from October 2015 to April 2018 in Peking University Peoples’ Hospital, then flow cytometry method was performed to detect the expression frequencies of CD34, CD38, CD123, CD96 and TIM-3 to analyze the relationship between leukemia stem cells associated antigens expressions and relapse.@*Results@#Of 47 t (8;21) AML patients tested, the median percentages of CD34+CD38-, CD34+ CD38-CD123+, CD34+CD38- CD96+ and CD34+ CD38- TIM-3+ cells among nucleated cells were 2.37%, 0.24%, 0.27% and 0.06%, respectively. All the frequencies of CD34+CD38-, CD34+CD38-CD123+, CD34+CD38-CD96+ and CD34+ CD38-TIM-3+ cells had no impact on the achievement of CR after the first course of induction. All higher frequencies of CD34+CD38-, CD34+CD38-CD123+, CD34+CD38-CD96+ cells were related to higher 2-year CIR rate. Whereas, the frequency of CD34+ CD38- TIM-3+ cells had no impact on CIR rate. Both high frequency of CD34+ CD38- cells and the high level of minimal residual diseases (patients with <3-log reduction in the RUNX1-RUNX1T1 transcript level after the second consolidation therapy) were independent poor prognostic factors of CIR[P=0.025, HR=6.9 (95%CI 1.3-37.4) ; P=0.031, HR=11.1 (95%CI 1.2-99.2) ].@*Conclusion@#Different leukemia stem cells associated antigens had distinct prognostic significance in t (8;21) AML. High frequencies of CD34+ CD38-, CD34+ CD38- CD123+ and CD34+CD38-CD96+ cells at diagnosis predicted relapse in patients with t (8;21) AML.

15.
Frontiers of Medicine ; (4): 388-397, 2019.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-771283

RESUMO

Collaboration of c-KIT mutations with AML1-ETO (AE) has been demonstrated to induce t(8; 21) acute myeloid leukemia (AML). Targeted therapies designed to eliminate AE and c-KIT oncoproteins may facilitate effective treatment of t(8; 21) AML. Homoharringtonine (HHT) features activity against tumor cells harboring c-KIT mutations, whereas oridonin can induce t(8; 21) AML cell apoptosis and AE cleavage. Therefore, studies should explore the efficacy of combination therapy with oridonin and HHT in t(8; 21) AML. In this study, we investigated the synergistic effects and mechanism of oridonin combined with HHT in t(8; 21) AML cell line and mouse model. The two drugs synergistically inhibited cell viability and induced significant mitochondrial membrane potential loss and apoptosis. Oridonin and HHT induced significant downregulation of c-KIT and its downstream signaling pathways and promoted AE cleavage. HHT increased intracellular oridonin concentration by modulating the expressions of MRP1 and MDR1, thus enhancing the effects of oridonin. The combination of oridonin and HHT prolonged t(8; 21) leukemia mouse survival. In conclusion, oridonin and HHTexert synergistic effects against t(8; 21) leukemia in vivo and in vitro, thereby indicating that their combination may be an effective therapy for t(8; 21) leukemia.

16.
EMBO Mol Med ; 9(7): 933-949, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28539478

RESUMO

DNA methylation patterns are frequently deregulated in t(8;21) acute myeloid leukaemia (AML), but little is known of the mechanisms by which specific gene sets become aberrantly methylated. Here, we found that the promoter DNA methylation signature of t(8;21)+ AML blasts differs from that of t(8;21)- AMLs. This study demonstrated that a novel hypermethylated zinc finger-containing protein, THAP10, is a target gene and can be epigenetically suppressed by AML1-ETO at the transcriptional level in t(8;21) AML. Our findings also show that THAP10 is a bona fide target of miR-383 that can be epigenetically activated by the AML1-ETO recruiting co-activator p300. In this study, we demonstrated that epigenetic suppression of THAP10 is the mechanistic link between AML1-ETO fusion proteins and tyrosine kinase cascades. In addition, we showed that THAP10 is a nuclear protein that inhibits myeloid proliferation and promotes differentiation both in vitro and in vivo Altogether, our results revealed an unexpected and important epigenetic mini-circuit of AML1-ETO/THAP10/miR-383 in t(8;21) AML, in which epigenetic suppression of THAP10 predicts a poor clinical outcome and represents a novel therapeutic target.


Assuntos
Carcinogênese , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Leucemia Mieloide Aguda/fisiopatologia , MicroRNAs/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Linhagem Celular Tumoral , Metilação de DNA , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas
17.
Gene ; 615: 35-40, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28322996

RESUMO

t(8;21) acute myeloid leukemia (AML) is characterized by a translocation between chromosomes 8 and 21 and formation of a distinctive RUNX1-RUNX1T1 fusion transcript. This translocation places RUNX1T1 under control of the RUNX1 promoter leading to a pronounced upregulation of RUNX1T1 transcripts in t(8;21) AML, compared to normal hematopoietic cells. We investigated the role of highly-upregulated RUNX1T1 under the hypothesis that it acts as competing endogenous RNA (ceRNA) titrating microRNAs (miRNAs) away from their target transcripts and thus contributes to AML formation. Using publicly available t(8;21) AML RNA-Seq and miRNA-Seq data available from The Cancer Genome Atlas (TCGA) project, we obtained a network consisting of 605 genes that may act as ceRNAs competing for miRNAs with the suggested RUNX1T1 miRNA sponge. Among the 605 ceRNA candidates, 121 have previously been implied in cancer development. Players in the integrin, cadherin, and Wnt signaling pathways affected by the RUNX1T1 sponge were overrepresented. Finally, among a set of 21 high interest RUNX1T1 ceRNAs we found multiple genes that have previously been linked to AML formation. In conclusion, our study offers a novel look at the role of the RUNX1-RUNX1T1 fusion transcript in t(8;21) AML beyond previously investigated genetic and epigenetic aberrations.


Assuntos
Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Leucemia Mieloide Aguda/genética , MicroRNAs , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Sítios de Ligação , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Ontologia Genética , Humanos , MicroRNAs/metabolismo , Proteínas de Fusão Oncogênica/genética , Mapas de Interação de Proteínas , Proteína 1 Parceira de Translocação de RUNX1 , Translocação Genética , Via de Sinalização Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...