Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
Birth Defects Res ; 116(7): e2380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38980211

RESUMO

BACKGROUND: Fontaine progeroid syndrome (FPS, OMIM 612289) is a recently identified genetic disorder stemming from pathogenic variants in the SLC25A24 gene, encoding a mitochondrial carrier protein. It encompasses Gorlin-Chaudry-Moss syndrome and Fontaine-Farriaux syndrome, primarily manifesting as craniosynostosis with brachycephaly, distinctive dysmorphic facial features, hypertrichosis, severe prenatal and postnatal growth restriction, limb shortening, and early aging with characteristic skin changes, phalangeal anomalies, and genital malformations. CASES: All known occurrences of FPS have been postnatally observed until now. Here, we present the first two prenatal cases identified during the second trimester of pregnancy. While affirming the presence of most postnatal abnormalities in prenatal cases, we note the absence of a progeroid appearance in young fetuses. Notably, our reports introduce new phenotypic features like encephalocele and nephromegaly, which were previously unseen postnatally. Moreover, paternal SLC25A24 mosaicism was detected in one case. CONCLUSIONS: We present the initial two fetal instances of FPS, complemented by thorough phenotypic and genetic assessments. Our findings expand the phenotypical spectrum of FPS, unveiling new fetal phenotypic characteristics. Furthermore, one case underscores a potential novel inheritance pattern in this disorder. Lastly, our observations emphasize the efficacy of exome/genome sequencing in both prenatal and postmortem diagnosis of rare polymalformative syndromes with a normal karyotype and array-based comparative genomic hybridization (CGH).


Assuntos
Genótipo , Mosaicismo , Fenótipo , Diagnóstico Pré-Natal , Humanos , Mosaicismo/embriologia , Feminino , Gravidez , Diagnóstico Pré-Natal/métodos , Masculino , Feto , Adulto , Proteínas Mitocondriais/genética , Mutação/genética , Progéria/genética , Proteínas de Ligação ao Cálcio , Antiporters
2.
Arch Gynecol Obstet ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008085

RESUMO

PURPOSE: The eccentric implantation of pregnancies in the upper lateral aspect of the uterine cavity is poorly defined clinically. The aim of the current study was to investigate whether differentiating between uterine anomalies that can lead to cavitary distortion has implications for the management of these pregnancies. METHODS: Eight cases of first-trimester eccentric pregnancy implantation within the endometrial cavity (study group) were retrospectively identified. For each woman in the study group, 10 women identified as having a first-trimester concentric pregnancy implantation during the first-trimester US examination were retrieved from our database (control group). After delivery or pregnancy demise, the presence of uterine anomalies was assessed by a 3D-US examination in all patients. RESULTS: In the study group patients, an increased incidence of uterine anomalies (50.0% vs. 8.8%, p = 0.007) was found, compared to the controls. In the study group, the eccentric location persisted in half of the pregnancies (n = 4; 50%), whereas the other half migrated to a more centric location within the endometrial cavity (n = 4; 50%). The follow-up examination showed that all the early pregnancy demises occurred in cases where the pregnancy persisted at the eccentric location. Uterine malformations were also detected in all these cases. CONCLUSION: The data point to a significantly higher incidence of uterine anomalies in patients diagnosed with eccentric pregnancy implantation within the endometrial cavity. These results advocate for the value of differentiating between eccentric pregnancies in non-anomalous versus anomalous uteri.

3.
Med Phys ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857570

RESUMO

BACKGROUND: Three-dimensional (3D) ultrasound (US) imaging has shown promise in non-invasive monitoring of changes in the lateral brain ventricles of neonates suffering from intraventricular hemorrhaging. Due to the poorly defined anatomical boundaries and low signal-to-noise ratio, fully supervised methods for segmentation of the lateral ventricles in 3D US images require a large dataset of annotated images by trained physicians, which is tedious, time-consuming, and expensive. Training fully supervised segmentation methods on a small dataset may lead to overfitting and hence reduce its generalizability. Semi-supervised learning (SSL) methods for 3D US segmentation may be able to address these challenges but most existing SSL methods have been developed for magnetic resonance or computed tomography (CT) images. PURPOSE: To develop a fast, lightweight, and accurate SSL method, specifically for 3D US images, that will use unlabeled data towards improving segmentation performance. METHODS: We propose an SSL framework that leverages the shape-encoding ability of an autoencoder network to enforce complex shape and size constraints on a 3D U-Net segmentation model. The autoencoder created pseudo-labels, based on the 3D U-Net predicted segmentations, that enforces shape constraints. An adversarial discriminator network then determined whether images came from the labeled or unlabeled data distributions. We used 887 3D US images, of which 87 had manually annotated labels and 800 images were unlabeled. Training/validation/testing sets of 25/12/50, 25/12/25 and 50/12/25 images were used for model experimentation. The Dice similarity coefficient (DSC), mean absolute surface distance (MAD), and absolute volumetric difference (VD) were used as metrics for comparing to other benchmarks. The baseline benchmark was the fully supervised vanilla 3D U-Net while dual task consistency, shape-aware semi-supervised network, correlation-aware mutual learning, and 3D U-Net Ensemble models were used as state-of-the-art benchmarks with DSC, MAD, and VD as comparison metrics. The Wilcoxon signed-rank test was used to test statistical significance between algorithms for DSC and VD with the threshold being p < 0.05 and corrected to p < 0.01 using the Bonferroni correction. The random-access memory (RAM) trace and number of trainable parameters were used to compare the computing efficiency between models. RESULTS: Relative to the baseline 3D U-Net model, our shape-encoding SSL method reported a mean DSC improvement of 6.5%, 7.7%, and 4.1% with a 95% confidence interval of 4.2%, 5.7%, and 2.1% using image data splits of 25/12/50, 25/12/25, and 50/12/25, respectively. Our method only used a 1GB increase in RAM compared to the baseline 3D U-Net and required less than half the RAM and trainable parameters compared to the 3D U-Net ensemble method. CONCLUSIONS: Based on our extensive literature survey, this is one of the first reported works to propose an SSL method designed for segmenting organs in 3D US images and specifically one that incorporates unlabeled data for segmenting neonatal cerebral lateral ventricles. When compared to the state-of-the-art SSL and fully supervised learning methods, our method yielded the highest DSC and lowest VD while being computationally efficient.

4.
Front Bioeng Biotechnol ; 12: 1388907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903187

RESUMO

Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.

5.
Ultrason Imaging ; : 1617346241259049, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38903053

RESUMO

Three-dimensional (3D) ultrasound imaging can be accomplished by reconstructing a sequence of two-dimensional (2D) ultrasound images. However, 2D ultrasound images usually suffer from low resolution in the elevation direction, thereby impacting the accuracy of 3D reconstructed results. The lateral resolution of 2D ultrasound is known to significantly exceed the elevation resolution. By combining scanning sequences acquired from orthogonal directions, the effects of poor elevation resolution can be mitigated through a composite reconstructing process. Moreover, capturing ultrasound images from multiple perspectives necessitates a precise probe positioning method with a wide angle of coverage. Optical tracking is popularly used for probe positioning for its high accuracy and environment-robustness. In this paper, a novel large-angle accurate optical positioning method is used for enhancing resolution in 3D ultrasound imaging through orthogonal-view scanning and composite reconstruction. Experiments on two phantoms proved that our method could significantly improve reconstruction accuracy in the elevation direction of the probe compared with single-angle parallel scanning. The results indicate that our method holds the potential to improve current 3D ultrasound imaging techniques.

6.
BMC Pregnancy Childbirth ; 24(1): 420, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858685

RESUMO

BACKGROUND: Frontonasal dysplasia (FND) is a rare congenital anomaly resulting from the underdevelopment of the frontonasal process, and it can be syndromic or nonsyndromic. The typical features of FND include a deformed nose and ocular hypertelorism, which are sometimes associated with cleft lip and/or palate. Only approximately 10 cases of prenatally diagnosed nonsyndromic FND have been reported in the past 30 years. CASE PRESENTATION: A 33-year-old woman (G2P1) was referred to our center at 20 gestational weeks for bilateral hydrocephaly. We detected typical features of FND, including severe hypertelorism, median nasal bifidity, a minor cleft lip, and multiple limb anomalies using three-dimensional (3D) ultrasound. A hypoplastic corpus callosum, unilateral microtia, and a ventricular septal defect were also detected. Genetic testing, including karyotype analysis, copy number variation (CNV) analysis, trio-whole exome sequencing (trio-WES), and trio-whole-gene sequencing (trio-WGS), was performed; however, we did not find any de novo gene variants in the fetus as compared to the parents. Postmortem examination confirmed the prenatal diagnosis of FND. CONCLUSION: The present case expands the wide phenotypic spectrum of prenatal FND patients. 3D ultrasound is a useful tool for detecting facial and limb deformities.


Assuntos
Agenesia do Corpo Caloso , Anormalidades Craniofaciais , Face , Hidrocefalia , Imageamento Tridimensional , Deformidades Congênitas dos Membros , Ultrassonografia Pré-Natal , Humanos , Feminino , Adulto , Gravidez , Anormalidades Craniofaciais/diagnóstico por imagem , Agenesia do Corpo Caloso/diagnóstico por imagem , Agenesia do Corpo Caloso/genética , Deformidades Congênitas dos Membros/diagnóstico por imagem , Deformidades Congênitas dos Membros/genética , Face/anormalidades , Face/diagnóstico por imagem , Hidrocefalia/diagnóstico por imagem , Comunicação Interventricular/diagnóstico por imagem , Comunicação Interventricular/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/genética
7.
Artigo em Inglês | MEDLINE | ID: mdl-38829555

RESUMO

BACKGROUND: Histopathological analysis often shows close resection margins after surgical removal of tongue squamous cell carcinoma (TSCC). This study aimed to investigate the agreement between intraoperative 3D ultrasound (US) margin assessment and postoperative histopathology of resected TSCC. METHODS: In this study, ten patients were prospectively included. Three fiducial cannulas were inserted into the specimen. To acquire a motorized 3D US volume, the resected specimen was submerged in saline, after which images were acquired while the probe moved over the specimen. The US volumes were annotated twice: (1) automatically and (2) manually, with the automatic segmentation as initialization. After standardized histopathological processing, all hematoxylin-eosin whole slide images (WSI) were included for analysis. Corresponding US images were found based on the known WSI spacing and fiducials. Blinded observers measured the tumor thickness and the margin in the caudal, deep, and cranial directions on every slide. The anterior and posterior margin was measured per specimen. RESULTS: The mean difference in all measurements between manually segmented US and histopathology was 2.34 (SD: ±3.34) mm, and Spearman's rank correlation coefficient was 0.733 (p < 0.001). The smallest mean difference was in the tumor thickness with 0.80 (SD: ±2.44) mm and a correlation of 0.836 (p < 0.001). Limitations were observed in the caudal region, where no correlation was found. CONCLUSION: This study shows that 3D US and histopathology have a moderate to strong statistically significant correlation (r = 0.733; p < 0.001) and a mean difference between the modalities of 2.3 mm (95%CI: -4.2; 8.9). Future research should focus on patient outcomes regarding resection margins.

8.
Neurogastroenterol Motil ; 36(7): e14810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38689439

RESUMO

BACKGROUND: Disruption of external anal sphincter muscle (EAS) is an important factor in the multifactorial etiology of fecal incontinence (FI). OBJECTIVES: We categorize FI patients into four groups based on the location of lesion in neuromuscular circuitry of EAS to determine if there are differences with regards to fecal incontinence symptoms severity (FISI) score, age, BMI, obstetrical history, and anal sphincter muscle damage. METHODS: Female patients (151) without any neurological symptoms, who had undergone high-resolution manometry, anal sphincter EMG, and 3D ultrasound imaging of the anal sphincter were assessed. Patients were categorized into four groups: Group 1 (normal)-normal cough EMG (>10 µV), normal squeeze EMG (>10 µV), and normal anal squeeze pressure (>124 mmHg); Group 2 (cortical apraxia, i.e., poor cortical activation)-normal cough EMG, low squeeze EMG, and low anal squeeze pressure; Group 3 (muscle damage)-normal cough EMG, normal squeeze EMG, and low anal squeeze pressure; and Group 4 (pudendal nerve damage)-low cough EMG, low squeeze EMG, and low anal squeeze pressure. RESULTS: The four patient groups were not different with regards to the patient's age, BMI, parity, and FISI scores. 3D ultrasound images of the anal sphincter complex revealed significant damage to the internal anal sphincter, external anal sphincter, and puborectalis muscles in all four groups. CONCLUSION: The FI patients are a heterogeneous group; majority of these patients have significant damage to the muscles of the anal sphincter complex. Whether biofeedback therapy response is different among different patient groups requires study.


Assuntos
Canal Anal , Eletromiografia , Incontinência Fecal , Manometria , Humanos , Canal Anal/fisiopatologia , Canal Anal/diagnóstico por imagem , Feminino , Eletromiografia/métodos , Incontinência Fecal/fisiopatologia , Pessoa de Meia-Idade , Manometria/métodos , Adulto , Idoso , Pressão , Ultrassonografia
9.
Int J Comput Assist Radiol Surg ; 19(7): 1251-1258, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789882

RESUMO

PURPOSE: Transoral robotic surgery (TORS) is a challenging procedure due to its small workspace and complex anatomy. Ultrasound (US) image guidance has the potential to improve surgical outcomes, but an appropriate method for US probe manipulation has not been defined. This study evaluates using an additional robotic (4th) arm on the da Vinci Surgical System to perform extracorporeal US scanning for image guidance in TORS. METHODS: A stereoscopic imaging system and da Vinci-compatible US probe attachment were developed to enable control of the extracorporeal US probe from the surgeon console. The prototype was compared to freehand US by nine operators in three tasks on a healthy volunteer: (1) identification of the common carotid artery, (2) carotid artery scanning, and (3) identification of the submandibular gland. Operator workload and user experience were evaluated using a questionnaire. RESULTS: The robotic US tasks took longer than freehand US tasks (2.09x longer; p = 0.001 ) and had higher operator workload (2.12x higher; p = 0.004 ). However, operator-rated performance was closer (avg robotic/avg freehand = 0.66; p = 0.017 ), and scanning performance measured by MRI-US average Hausdorff distance provided no statistically significant difference. CONCLUSION: Extracorporeal US scanning for intraoperative US image guidance is a convenient approach for providing the surgeon direct control over the US image plane during TORS, with little modification to the existing operating room workflow. Although more time-consuming and higher operator workload, several methods have been identified to address these limitations.


Assuntos
Estudos de Viabilidade , Procedimentos Cirúrgicos Robóticos , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Ultrassonografia de Intervenção/métodos , Glândula Submandibular/cirurgia , Glândula Submandibular/diagnóstico por imagem , Desenho de Equipamento , Cirurgia Assistida por Computador/métodos
10.
J Perinat Med ; 52(6): 617-622, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38742481

RESUMO

OBJECTIVES: To assess embryonic genital tubercle using transvaginal three-dimensional (3D) ultrasound at 8-10+6 weeks of gestation. METHODS: One-hundred and two transvaginal 3D ultrasound scans were performed for first-trimester dating at 8-10+6 weeks of gestation. The genital tubercle angle (GTA) and genital tubercle length (GTL) were measured with a mid-sagittal view of the embryo using the 3D ultrasound multiplanar mode. Intra- and inter-observer agreements regarding GTA and GTL were also assessed with Bland-Altman plots and intra- and inter-correlation coefficients. RESULTS: There were no significant differences in GTA between male and female embryos at 8, 9, 10 weeks, or 8-10+6 weeks of gestation, respectively. There were also no significant differences in GTL between male and female embryos at 8, 9, 10 weeks, or 8-10+6 weeks of gestation, respectively. However, GTL increased linearly with advancing gestation (r=0.8276, p<0.00001). Mean GTL (SD) values at 8, 9, and 10 weeks were 0.833 mm (0.274), 1.623 mm (0.262), and 2.152 mm (0.420), respectively (p<0.001). Intra- and inter-reproducibilities of GTA and GTL were excellent. The intra- and inter-correlation coefficients of GTA and GTL were 0.964 and 0.995, and 0.996 and 0.9933, respectively. CONCLUSIONS: The genital tubercle could be identified using transvaginal 3D ultrasound at 8-10+6 weeks of gestation. However, sex differentiation could not be performed at this age. The genital tubercle linearly developed with advancing gestation during the mid-first trimester of pregnancy.


Assuntos
Imageamento Tridimensional , Primeiro Trimestre da Gravidez , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Ultrassonografia Pré-Natal/métodos , Imageamento Tridimensional/métodos , Masculino , Adulto , Idade Gestacional , Genitália Feminina/diagnóstico por imagem , Genitália Feminina/embriologia
11.
Ultrasonics ; 141: 107332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718460

RESUMO

BACKGROUND: Stroke is the second leading cause of death across the globe. Early screening and risk detection could provide early intervention and possibly prevent its incidence. Imaging modalities, including 1D-Transcranial Doppler Ultrasound (1D-TCD) or Transcranial Color-code sonography (TCCS), could only provide low spatial resolution or 2D image information, respectively. Notably, 3D imaging modalities including CT have high radiation exposure, whereas MRI is expensive and cannot be adopted in patients with implanted devices. This study proposes an alternative imaging solution for reconstructing 3D Doppler ultrasound geared towards providing a screening tool for the 3D vessel structure of the brain. METHODS: The system comprises an ultrasound phased array attached to a servo motor, which can rotate 180˚ at a speed of 2˚/s. We extracted the color Doppler ROI from the image before reconstructing it into a 3D view using a customized pixel-based algorithm. Different vascular diameters, flow velocity, and depth were tested using a vascular phantom with a pumped flow to confirm the system for imaging blood flow. These variables were set to mimic the vessel diameter, flow speed, and depth of the Circle of Willis (CoW) during a transcranial screening. RESULTS AND CONCLUSIONS: The lower values of absolute error and ratio were found in the larger vascular channels, and vessel diameter overrepresentation was observed. Under different flow velocities, such diameter overrepresentation in the reconstructed flow did not change much; however, it did change with different depths. Meanwhile, the setting of the velocity scale and the color gain affected the dimension of reconstructed objectives. Moreover, we presented a 3D image of CoW from a subject to demonstrate its potential. The findings of this work can provide a good reference for further studies on the reconstruction of the CoW or other blood vessels using Doppler imaging.


Assuntos
Círculo Arterial do Cérebro , Imageamento Tridimensional , Imagens de Fantasmas , Ultrassonografia Doppler Transcraniana , Círculo Arterial do Cérebro/diagnóstico por imagem , Imageamento Tridimensional/métodos , Ultrassonografia Doppler Transcraniana/métodos , Humanos , Algoritmos , Circulação Cerebrovascular , Velocidade do Fluxo Sanguíneo
12.
Ultrasound Med Biol ; 50(8): 1143-1154, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702284

RESUMO

OBJECTIVES: Freehand three-dimensional (3D) ultrasound (US) is of great significance for clinical diagnosis and treatment, it is often achieved with the aid of external devices (optical and/or electromagnetic, etc.) that monitor the location and orientation of the US probe. However, this external monitoring is often impacted by imaging environment such as optical occlusions and/or electromagnetic (EM) interference. METHODS: To address the above issues, we integrated a binocular camera and an inertial measurement unit (IMU) on a US probe. Subsequently, we built a tight coupling model utilizing the unscented Kalman algorithm based on Lie groups (UKF-LG), combining vision and inertial information to infer the probe's movement, through which the position and orientation of the US image frame are calculated. Finally, the volume data was reconstructed with the voxel-based hole-filling method. RESULTS: The experiments including calibration experiments, tracking performance evaluation, phantom scans, and real scenarios scans have been conducted. The results show that the proposed system achieved the accumulated frame position error of 3.78 mm and the orientation error of 0.36° and reconstructed 3D US images with high quality in both phantom and real scenarios. CONCLUSIONS: The proposed method has been demonstrated to enhance the robustness and effectiveness of freehand 3D US. Follow-up research will focus on improving the accuracy and stability of multi-sensor fusion to make the system more practical in clinical environments.


Assuntos
Algoritmos , Imageamento Tridimensional , Imagens de Fantasmas , Ultrassonografia , Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Ultrassonografia/instrumentação , Desenho de Equipamento , Humanos
13.
Tomography ; 10(5): 789-805, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38787020

RESUMO

The aim of this study was to show for the first time that low-frequency 3D-transmitted ultrasound tomography (3D UT, volography) can differentiate breast tissue types using tissue properties, accurately measure glandular and ductal volumes in vivo, and measure variation over time. Data were collected for 400 QT breast scans on 24 women (ages 18-71), including four (4) postmenopausal subjects, 6-10 times over 2+ months of observation. The date of onset of menopause was noted, and the cases were further subdivided into three (3) classes: pre-, post-, and peri-menopausal. The ducts and glands were segmented using breast speed of sound, attenuation, and reflectivity images and followed over several menstrual cycles. The coefficient of variation (CoV) for glandular tissue in premenopausal women was significantly larger than for postmenopausal women, whereas this is not true for the ductal CoV. The glandular standard deviation (SD) is significantly larger in premenopausal women vs. postmenopausal women, whereas this is not true for ductal tissue. We conclude that ducts do not appreciably change over the menstrual cycle in either pre- or post-menopausal subjects, whereas glands change significantly over the cycle in pre-menopausal women, and 3D UT can differentiate ducts from glands in vivo.


Assuntos
Mama , Imageamento Tridimensional , Ciclo Menstrual , Ultrassonografia Mamária , Humanos , Feminino , Adulto , Ciclo Menstrual/fisiologia , Pessoa de Meia-Idade , Idoso , Mama/diagnóstico por imagem , Adulto Jovem , Ultrassonografia Mamária/métodos , Imageamento Tridimensional/métodos , Adolescente , Glândulas Mamárias Humanas/diagnóstico por imagem
14.
Ultrasound Med Biol ; 50(7): 1045-1057, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702285

RESUMO

OBJECTIVE: This study aimed to realise 3-D super-resolution ultrasound imaging transcutaneously with a row-column array which has far fewer independent electronic channels and a wider field of view than typical fully addressed 2-D matrix arrays. The in vivo image quality of the row-column array is generally poor, particularly when imaging non-invasively. This study aimed to develop a suite of image formation and post-processing methods to improve image quality and demonstrate the feasibility of ultrasound localisation microscopy using a row-column array, transcutaneously on a rabbit model and in a human. METHODS: To achieve this, a processing pipeline was developed which included a new type of rolling window image reconstruction, which integrated a row-column array specific coherence-based beamforming technique with acoustic sub-aperture processing. This and other processing steps reduced the 'secondary' lobe artefacts, and noise and increased the effective frame rate, thereby enabling ultrasound localisation images to be produced. RESULTS: Using an in vitro cross tube, it was found that the procedure reduced the percentage of 'false' locations from ∼26% to ∼15% compared to orthogonal plane wave compounding. Additionally, it was found that the noise could be reduced by ∼7 dB and the effective frame rate was increased to over 4000 fps. In vivo, ultrasound localisation microscopy was used to produce images non-invasively of a rabbit kidney and a human thyroid. CONCLUSION: It has been demonstrated that the proposed methods using a row-column array can produce large field of view super-resolution microvascular images in vivo and in a human non-invasively.


Assuntos
Imageamento Tridimensional , Ultrassonografia , Coelhos , Animais , Humanos , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Desenho de Equipamento , Imagens de Fantasmas , Pele/diagnóstico por imagem , Estudos de Viabilidade
15.
Ultrason Imaging ; 46(3): 164-177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38597330

RESUMO

Three-dimensional (3D) ultrasonic imaging can enable post-facto plane of interest selection. It can be performed with devices such as wobbler probes, matrix probes, and sensor-based probes. Ultrasound systems that support 3D-imaging are expensive with added hardware complexity compared to 2D-imaging systems. An inertial measurement unit (IMU) can potentially be used for 3D-imaging by using it to track the motion of a one-dimensional array probe and constraining its motion in one degree of freedom (1-DoF) rotation (swept-fan). This work demonstrates the feasibility of an affordable IMU-assisted manual 3D-ultrasound scanner (IAM3US). A consumer-grade IMU-assisted 3D scanner prototype is designed with two support structures for swept-fan. After proper IMU calibration, an appropriate KF-based algorithm estimates the probe orientation during the swept-fan. An improved scanline-based reconstruction method is used for volume reconstruction. The evaluation of the IAM3US system is done by imaging a tennis ball filled with water and the head region of a fetal phantom. From fetal phantom reconstructed volumes, suitable 2D planes are extracted for biparietal diameter (BPD) manual measurements. Later, in-vivo data is collected. The novel contributions of this paper are (1) the application of a recently proposed algorithm for orientation estimation of swept-fan for 3D imaging, chosen based on the noise characteristics of selected consumer grade IMU (2) assessment of the quality of the 1-DoF swept-fan scan with a deflection detector along with monitoring of maximum angular rate during the scan and (3) two probe holder designs to aid the operator in performing the 1-DoF rotational motion and (4) end-to-end 3D-imaging system-integration. Phantom studies and preliminary in-vivo obstetric scans performed on two patients illustrate the usability of the system for diagnosis purposes.


Assuntos
Imageamento Tridimensional , Imagens de Fantasmas , Ultrassonografia , Imageamento Tridimensional/métodos , Humanos , Ultrassonografia/métodos , Algoritmos , Estudos de Viabilidade , Desenho de Equipamento , Movimento (Física) , Ultrassonografia Pré-Natal/métodos
16.
Adv Tech Stand Neurosurg ; 50: 185-199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592531

RESUMO

Favorable clinical outcomes in adult and pediatric neurosurgical oncology generally depend on the extent of tumor resection (EOR). Maximum safe resection remains the main aim of surgery in most intracranial tumors. Despite the accuracy of intraoperative magnetic resonance imaging (iMRI) in the detection of residual intraoperatively, it is not widely implemented worldwide owing to enormous cost and technical difficulties. Over the past years, intraoperative ultrasound (IOUS) has imposed itself as a valuable and reliable intraoperative tool guiding neurosurgeons to achieve gross total resection (GTR) of intracranial tumors.Being less expensive, feasible, doesn't need a high level of training, doesn't need a special workspace, and being real time with outstanding temporal and spatial resolution; all the aforementioned advantages give a superiority for IOUS in comparison to iMRI during resection of brain tumors.In this chapter, we spot the light on the technical nuances, advanced techniques, outcomes of resection, pearls, and pitfalls of the use of IOUS during the resection of brain tumors.


Assuntos
Neoplasias Encefálicas , Hemisferectomia , Psicocirurgia , Adulto , Criança , Humanos , Ultrassonografia , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
17.
J Clin Med ; 13(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610855

RESUMO

Background: Accurate prenatal diagnosis of cleft lip and palate is essential to discuss severity prediction, perform appropriate parental counseling, and, at last, establish long-term treatment planning. The aim of this systematic review was to analyze the accuracy of various imaging techniques for the prenatal diagnosis of cleft lip and palate, assess the pregnancy phase for orofacial clefts diagnosis, and study the different cleft types in terms of diagnostic methods, timing, and predictability. Methods: A search of the PubMed, EMBASE, Scopus, and Web of Science databases was conducted to identify potentially relevant studies published until January 2024. The quality of the selected articles was assessed using the Newcastle-Ottawa scale for methodological quality assessment of cohort studies and the QUADAS-2 scale for diagnostic test studies. Results: A total of 18 studies met the eligibility criteria and were included in the review. The findings of this review indicate that the majority of studies showed improved diagnostic accuracy when supplementary techniques, such as 3D ultrasound or magnetic resonance imaging, were added to 2D ultrasound. Conclusions: The implementation of magnetic resonance imaging as a standard procedure could significantly improve the precision of diagnosing cleft lip and palate. Therefore, the diagnostic technique used will play a crucial role in the accuracy of the diagnosis.

18.
Phys Med Biol ; 69(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38684166

RESUMO

Objective.Automated biopsy needle segmentation in 3D ultrasound images can be used for biopsy navigation, but it is quite challenging due to the low ultrasound image resolution and interference similar to the needle appearance. For 3D medical image segmentation, such deep learning networks as convolutional neural network and transformer have been investigated. However, these segmentation methods require numerous labeled data for training, have difficulty in meeting the real-time segmentation requirement and involve high memory consumption.Approach.In this paper, we have proposed the temporal information-based semi-supervised training framework for fast and accurate needle segmentation. Firstly, a novel circle transformer module based on the static and dynamic features has been designed after the encoders for extracting and fusing the temporal information. Then, the consistency constraints of the outputs before and after combining temporal information are proposed to provide the semi-supervision for the unlabeled volume. Finally, the model is trained using the loss function which combines the cross-entropy and Dice similarity coefficient (DSC) based segmentation loss with mean square error based consistency loss. The trained model with the single ultrasound volume input is applied to realize the needle segmentation in ultrasound volume.Main results.Experimental results on three needle ultrasound datasets acquired during the beagle biopsy show that our approach is superior to the most competitive mainstream temporal segmentation model and semi-supervised method by providing higher DSC (77.1% versus 76.5%), smaller needle tip position (1.28 mm versus 1.87 mm) and length (1.78 mm versus 2.19 mm) errors on the kidney dataset as well as DSC (78.5% versus 76.9%), needle tip position (0.86 mm versus 1.12 mm) and length (1.01 mm versus 1.26 mm) errors on the prostate dataset.Significance.The proposed method can significantly enhance needle segmentation accuracy by training with sequential images at no additional cost. This enhancement may further improve the effectiveness of biopsy navigation systems.


Assuntos
Imageamento Tridimensional , Ultrassonografia , Imageamento Tridimensional/métodos , Agulhas , Fatores de Tempo , Processamento de Imagem Assistida por Computador/métodos , Animais , Cães , Humanos , Aprendizado de Máquina Supervisionado , Biópsia por Agulha
19.
Comput Methods Programs Biomed ; 250: 108169, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643604

RESUMO

BACKGROUND AND OBJECTIVE: Computational Ultrasound Imaging (CUI) has become increasingly popular in the medical ultrasound community, facilitated by free simulation software. These tools enable the design and exploration of transmit sequences, transducer arrays, and signal processing. We recently introduced SIMUS, a frequency-based ultrasound simulator within the open-source MUST toolbox, which offers numerical advantages and allows easy consideration of frequency-dependent factors. In response to the growing interest in simulating ultrasound imaging with 2-D matrix arrays, we present 3-D versions, PFIELD3 and SIMUS3. METHOD: The linear acoustic equations driving these functions are described, with theoretical assumptions reviewed for user guidance. RESULTS: Comparative analyses with Field II, using a 32×32 element 3-MHz matrix array, highlight the performance of PFIELD3 and SIMUS3 under various transmission conditions. CONCLUSIONS: This work extends the capabilities of existing CUI tools and provides researchers with valuable resources for advanced ultrasound simulations.


Assuntos
Simulação por Computador , Imageamento Tridimensional , Software , Ultrassonografia , Ultrassonografia/métodos , Humanos , Transdutores , Algoritmos , Imagens de Fantasmas
20.
Artigo em Inglês | MEDLINE | ID: mdl-38530501

RESUMO

Architectural parameters of skeletal muscle such as pennation angle provide valuable information on muscle function, since they can be related to the muscle force generating capacity, fiber packing, and contraction velocity. In this paper, we introduce a 3D ultrasound-based workflow for determining 3D fascicle orientations of skeletal muscles. We used a custom-designed automated motor driven 3D ultrasound scanning system for obtaining 3D ultrasound images. From these, we applied a custom-developed multiscale-vessel enhancement filter-based fascicle detection algorithm and determined muscle volume and pennation angle. We conducted trials on a phantom and on the human tibialis anterior (TA) muscle of 10 healthy subjects in plantarflexion (157 ± 7 ∘ ), neutral position (109 ± 7 ∘ , corresponding to neutral standing), and one resting position in between (145 ± 6 ∘ ). The results of the phantom trials showed a high accuracy with a mean absolute error of 0.92 ± 0.59 ∘ . TA pennation angles were significantly different between all positions for the deep muscle compartment; for the superficial compartment, angles are significantly increased for neutral position compared to plantarflexion and resting position. Pennation angles were also significantly different between superficial and deep compartment. The results of constant muscle volumes across the 3 ankle joint angles indicate the suitability of the method for capturing 3D muscle geometry. Absolute pennation angles in our study were slightly lower than recent literature. Decreased pennation angles during plantarflexion are consistent with previous studies. The presented method demonstrates the possibility of determining 3D fascicle orientations of the TA muscle in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...