Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.247
Filtrar
1.
Vavilovskii Zhurnal Genet Selektsii ; 28(4): 398-406, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39027123

RESUMO

Serotonin 5-HT7 receptors (5-HT7R) are attracting increasing attention as important participants in the mechanisms of Alzheimer's disease and as a possible target for the treatment of various tau pathologies. In this study, we investigated the effects of amisulpride (5-HT7R inverse agonist) in C57BL/6J mice with experimentally induced expression of the gene encoding the aggregation-prone human Tau[R406W] protein in the prefrontal cortex. In these animals we examined short-term memory and the expression of genes involved in the development of tauopathy (Htr7 and Cdk5), as well as biomarkers of neurodegenerative processes - the Bdnf gene and its receptors TrkB (the Ntrk2 gene) and p75NTR (the Ngfr gene). In a short-term memory test, there was no difference in the discrimination index between mice treated with AAV-Tau[R406W] and mice treated with AAV-EGFP. Amisulpride did not affect this parameter. Administration of AAV-Tau[R406W] resulted in increased expression of the Htr7, Htr1a, and Cdk5 genes in the prefrontal cortex compared to AAV-EGFP animals. At the same time, amisulpride at the dose of 10 mg/kg in animals from the AAV-Tau[R406W] group caused a decrease in the Htr7, Htr1a genes mRNA levels compared to animals from the AAV-Tau[R406W] group treated with saline. A decrease in the expression of the Bdnf and Ntrk2 genes in the prefrontal cortex was revealed after administration of AAV-Tau[R406W]. Moreover, amisulpride at various doses (3 and 10 mg/kg) caused the same decrease in the transcription of these genes in mice without tauopathy. It is also interesting that in mice of the AAV-EGFP group, administration of amisulpride at the dose of 10 mg/kg increased the Ngfr gene mRNA level. The data obtained allow us to propose the use of amisulpride in restoring normal tau protein function. However, it should be noted that prolonged administration may result in adverse effects such as an increase in Ngfr expression and a decrease in Bdnf and Ntrk2 expression, which is probably indicative of an increase in neurodegenerative processes.

2.
Heliyon ; 10(12): e33050, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994087

RESUMO

Pruritus is an uncomfortable sensation induced by various pruritogens, including serotonin. Serotonin, acting as an inflammatory mediator, can activate a histamine-independent pathway. Consequently, many anti-pruritus medications, such as antihistamines, are not effective in adequately relieving patient symptoms. Niclosamide, an anthelmintic drug, has recently demonstrated an affinity for Metabotropic glutamate receptors (mGluRs). mGluRs are a group of receptors activated by glutamate, and they are involved in regulating neuronal excitability. In this study, we utilized mouse models of serotonergic itch and administered different doses of Niclosamide to examine the expression of mGluR1, mGluR5, and 5-HT2. The administration of 5 mg/kg Niclosamide successfully suppressed pruritus in the mice. Additionally, the levels of mGluR1, mGluR5, 5-HT2, and TRPV1 were significantly reduced. These findings suggest that Niclosamide holds promise as a potential antipruritic drug.

3.
Pharmacol Biochem Behav ; 242: 173823, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39002804

RESUMO

PURPOSE: For understanding the neurochemical mechanism of neuropsychiatric conditions associated with cognitive deficits it is of major relevance to elucidate the influence of serotonin (5-HT) agonists and antagonists on memory function as well dopamine (DA) and 5-HT release and metabolism. In the present study, we assessed the effects of the 5-HT2A receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) and the 5-HT2A receptor altanserin (ALT) on object and place recognition memory and cerebral neurotransmitters and metabolites in the rat. METHODS: Rats underwent a 5-min exploration trial in an open field with two identical objects. After systemic injection of a single dose of either DOI (0.1 mg/kg), ALT (1 mg/kg) or the respectice vehicle (0.9 % NaCl, 50 % DMSO), rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Upon the assessment of object exploration and motor/exploratory behaviors, rats were sacrificed. DA, 5-HT and metabolite levels were analyzed in cingulate (CING), caudateputamen (CP), nucleus accumbens (NAC), thalamus (THAL), dorsal (dHIPP) and ventral hippocampus (vHIPP), brainstem and cerebellum with high performance liquid chromatography. RESULTS: DOI decreased rearing but increased head-shoulder motility relative to vehicle. Memory for object and place after both DOI and ALT was not different from vehicle. Network analyses indicated that DOI inhibited DA metabolization in CING, CP, NAC, and THAL, but facilitated it in dHIPP. Likewise, DOI inhibited 5-HT metabolization in CING, NAC, and THAL. ALT facilitated DA metabolization in the CING, NAC, dHIPP, vHIPP, and CER, but inhibited it in the THAL. Additionally, ALT facilitated 5-HT metabolization in NAC and dHIPP. CONCLUSIONS: DOI and ALT differentially altered the quantitative relations between the neurotransmitter/metabolite levels in the individual brain regions, by inducing region-specific shifts in the metabolization pathways. Findings are relevant for understanding the neurochemistry underlying DAergic and/or 5-HTergic dysfunction in neurological and psychiatric conditions.

4.
Dev Psychobiol ; 66(6): e22524, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973227

RESUMO

Alloparenting refers to the practice of caring for the young by individuals other than their biological parents. The relationship between the dynamic changes in psychological functions underlying alloparenting and the development of specific neuroreceptors remains unclear. Using a classic 10-day pup sensitization procedure, together with a pup preference and pup retrieval test on the EPM (elevated plus maze), we showed that both male and female adolescent rats (24 days old) had significantly shorter latency than adult rats (65 days old) to be alloparental, and their motivation levels for pups and objects were also significantly higher. In contrast, adult rats retrieved more pups than adolescent rats even though they appeared to be more anxious on the EPM. Analysis of mRNA expression using real-time-PCR revealed a higher dopamine D2 receptor (DRD2) receptor expression in adult hippocampus, amygdala, and ventral striatum, along with higher dopamine D1 receptor (DRD1) receptor expression in ventral striatum compared to adolescent rats. Adult rats also showed significantly higher levels of 5-hydroxytryptamine receptor 2A (HTR2A) receptor expression in the medial prefrontal cortex, amygdala, ventral striatum, and hypothalamus. These results suggest that the faster onset of alloparenting in adolescent rats compared to adult rats, along with the psychological functions involved, may be mediated by varying levels of dopamine DRD1, DRD2, and HTR2A in different forebrain regions.


Assuntos
Prosencéfalo , RNA Mensageiro , Receptor 5-HT2A de Serotonina , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Masculino , Ratos , Feminino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Receptor 5-HT2A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/genética , Prosencéfalo/metabolismo , Empatia/fisiologia , Fatores Etários , Caracteres Sexuais , Ratos Sprague-Dawley , Comportamento Animal/fisiologia , Tonsila do Cerebelo/metabolismo
5.
Pharmacol Rep ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971919

RESUMO

BACKGROUND: The serotonin 5-HT5A receptor has attracted much more research attention, due to the therapeutic potential of its ligands being increasingly recognized, and the possibilities that lie ahead of these findings. There is a growing body of evidence indicating that these ligands have procognitive, pro-social, and anti-depressant properties, which offers new avenues for the development of treatments that could address socially important conditions related to the malfunctioning of the central nervous system. The aim of our study was to unravel the molecular determinants for 5-HT5AR ligands that govern their activity towards the receptor. METHODS: In response to the need for identification of molecular determinants for 5-HT5AR activity, we prepared a comprehensive collection of 5-HT5AR ligands, carefully gathering literature and patent data. Leveraging molecular modeling techniques, such as pharmacophore hypothesis development, docking, and molecular dynamics simulations enables to gain valuable insights into the specific interactions of 5-HT5AR ligand groups with the receptor. RESULTS: The obtained comprehensive set of 2160 compounds was divided into dozens of subsets, and a pharmacophore model was developed for each group. The results from the docking and molecular dynamics simulations have enabled the identification of crucial ligand-protein interactions that are essential for the compound's activity towards 5-HT5AR. CONCLUSIONS: The findings from the molecular modeling study provide valuable insights that can guide medicinal chemists in the development of new 5-HT5AR ligands. Considering the pharmacological significance of these compounds, they have the potential to become impactful treatments for individuals and communities in the future. Understanding how different crystal/cryo-EM structures of 5-HT5AR affect molecular modeling experiments could have major implications for future computational studies on this receptor.

6.
Transl Neurodegener ; 13(1): 34, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044270

RESUMO

BACKGROUND: Depressive symptoms often occur in patients with Alzheimer's disease (AD) and exacerbate the pathogenesis of AD. However, the neural circuit mechanisms underlying the AD-associated depression remain unclear. The serotonergic system plays crucial roles in both AD and depression. METHODS: We used a combination of in vivo trans-synaptic circuit-dissecting anatomical approaches, chemogenetic manipulations, optogenetic manipulations, pharmacological methods, behavioral testing, and electrophysiological recording to investigate dorsal raphe nucleus serotonergic circuit in AD-associated depression in AD mouse model. RESULTS: We found that the activity of dorsal raphe nucleus serotonin neurons (DRN5-HT) and their projections to the dorsal hippocampal CA1 (dCA1) terminals (DRN5-HT-dCA1CaMKII) both decreased in brains of early 5×FAD mice. Chemogenetic or optogenetic activation of the DRN5-HT-dCA1CaMKII neural circuit attenuated the depressive symptoms and cognitive impairments in 5×FAD mice through serotonin receptor 1B (5-HT1BR) and 4 (5-HT4R). Pharmacological activation of 5-HT1BR or 5-HT4R attenuated the depressive symptoms and cognitive impairments in 5×FAD mice by regulating the DRN5-HT-dCA1CaMKII neural circuit to improve synaptic plasticity. CONCLUSIONS: These findings provide a new mechanistic connection between depression and AD and provide potential pharmaceutical prevention targets for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Depressão , Modelos Animais de Doenças , Núcleo Dorsal da Rafe , Camundongos Transgênicos , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Masculino , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/fisiopatologia , Camundongos , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/fisiologia , Depressão/metabolismo , Depressão/genética , Depressão/psicologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Hipocampo/metabolismo , Serotonina/metabolismo , Optogenética , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia
7.
Neuropharmacology ; 258: 110068, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996832

RESUMO

Birth stress is a risk factor for psychiatric disorders and associated with exaggerated release of the stress hormone arginine vasopressin (AVP) into circulation and in the brain. In perinatal hippocampus, AVP activates GABAergic interneurons which leads to suppression of spontaneous network events and suggests a protective function of AVP on cortical networks during birth. However, the role of AVP in developing subcortical networks is not known. Here we tested the effect of AVP on the dorsal raphe nucleus (DRN) 5-hydroxytryptamine (5-HT, serotonin) system in male and female neonatal rats, since early 5-HT homeostasis is critical for the development of cortical brain regions and emotional behaviors. We show that AVP is strongly excitatory in neonatal DRN: it increases excitatory synaptic inputs of 5-HT neurons via V1A receptors in vitro and promotes their action potential firing through a combination of its effect on glutamatergic synaptic transmission and a direct effect on the excitability of these neurons. Furthermore, we identified two major firing patterns of neonatal 5-HT neurons in vivo, tonic regular firing and low frequency oscillations of regular spike trains and confirmed that these neurons are also activated by AVP in vivo. Finally, we show that the sparse vasopressinergic innervation in neonatal DRN originates exclusively from cell groups in medial amygdala and bed nucleus of stria terminalis. Hyperactivation of the neonatal 5-HT system by AVP during birth stress may impact its own functional development and affect the maturation of cortical target regions, which may increase the risk for psychiatric conditions later on.

8.
Expert Rev Gastroenterol Hepatol ; : 1-14, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39034812

RESUMO

INTRODUCTION: Functional constipation (FC) is a common childhood condition, diagnosed via the Rome IV criteria. Standard therapy includes lifestyle and dietary modification followed by initiation of osmotic laxative therapy. About 30% of children continue to experience symptoms related to FC despite appropriate management. New pharmacologic, surgical, and neuromodulatory therapies for FC are now available for use in adult and pediatric populations. In 2023, the first pharmacologic agent, linaclotide, obtained FDA approval for treatment of FC in children 6-17 years old. AREAS COVERED: This article reviews current and emerging pharmacologic, surgical, and neuromodulation therapies for the management of FC in pediatric patients. Efficacy and safety data regarding each of these modalities was reviewed and discussed. EXPERT OPINION: Advancements in therapeutics available for the management of FC necessitate further investigation on safety and efficacy in pediatric populations. Careful consideration should be taken in choosing an available treatment with limited pediatric evidence as adult and pediatric FC have different underlying pathophysiology and require a different therapeutic approach. Standardization of methodology and pediatric endpoints are needed to optimize ability to compare efficacy of different treatments. We predict the future of pediatric FC management will include a personalized approach to care, resulting in improved outcomes.

9.
Focus (Am Psychiatr Publ) ; 22(3): 373-380, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988467

RESUMO

Anorexia nervosa (AN) has the highest mortality rate of any psychiatric disease, yet available pharmacological treatments are largely ineffective due, in part, to an inadequate understanding of the neurobiological drivers that underpin the condition. The recent resurgence of research into the clinical applications of psychedelic medicine for a range of mental disorders has highlighted the potential for classical psychedelics, including psilocybin, to alleviate symptoms of AN that relate to serotonergic signaling and cognitive inflexibility. Clinical trials using psychedelics in treatment-resistant depression have shown promising outcomes, although these studies are unable to circumvent some methodological biases. The first clinical trial to use psilocybin in patients with AN commenced in 2019, necessitating a better understanding of the neurobiological mechanisms through which psychedelics act. Animal models are beneficial in this respect, allowing for detailed scrutiny of brain function and behavior and the potential to study pharmacology without the confounds of expectancy and bias that are impossible to control for in patient populations. We argue that studies investigating the neurobiological effects of psychedelics in animal models, including the activity-based anorexia (ABA) rodent model, are particularly important to inform clinical applications, including the subpopulations of patients that may benefit most from psychedelic medicine. Appeared originally in Front Neurosci 2020; 14:43.

10.
Curr Med Sci ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990450

RESUMO

OBJECTIVE: Alzheimer's disease (AD) has become a significant global concern, but effective drugs able to slow down AD progression is still lacked. Electroacupuncture (EA) has been demonstrated to ameliorate cognitive impairment in individuals with AD. However, the underlying mechanisms remains poorly understood. This study aimed at examining the neuroprotective properties of EA and its potential mechanism of action against AD. METHODS: APP/PS1 transgenic mice were employed to evaluate the protective effects of EA on Shenshu (BL 23) and Baihui (GV 20). Chemogenetic manipulation was used to activate or inhibit serotonergic neurons within the dorsal raphe nucleus (DRN). Learning and memory abilities were assessed by the novel object recognition and Morris water maze tests. Golgi staining, western blot, and immunostaining were utilized to determine EA-induced neuroprotection. RESULTS: EA at Shenshu (BL 23) and Baihui (GV 20) effectively ameliorated learning and memory impairments in APP/PS1 mice. EA attenuated dendritic spine loss, increased the expression levels of PSD95, synaptophysin, and brain-derived neurotrophic factor in hippocampus. Activation of serotonergic neurons within the DRN can ameliorate cognitive deficits in AD by activating glutamatergic neurons mediated by 5-HT1B. Chemogenetic inhibition of serotonergic neurons in the DRN reversed the effects of EA on synaptic plasticity and memory. CONCLUSION: EA can alleviate cognitive dysfunction in APP/PS1 mice by activating serotonergic neurons in the DRN. Further study is necessary to better understand how the serotonergic neurons-related neural circuits involves in EA-induced memory improvement in AD.

11.
Neuropharmacology ; 257: 110057, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964596

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.


Assuntos
Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal , Receptores de Serotonina , Regulação para Cima , Ácido Valproico , Animais , Receptores de Serotonina/metabolismo , Ácido Valproico/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Feminino , Regulação para Cima/efeitos dos fármacos , Masculino , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Ratos , Piperazinas/farmacologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/tratamento farmacológico , Ratos Wistar , Transtorno Autístico/metabolismo , Transtorno Autístico/tratamento farmacológico
12.
J Pharmacol Toxicol Methods ; 128: 107542, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032441

RESUMO

Cardiac valvulopathy (Cardiac Valve Disease; CVD) associated with off-target activation of the 5-hydroxytryptamine (5-HT) 2B receptor has been well recognized, but is still poorly predicted during drug development. The regulatory guidance proposes the use of 5-HT2B binding data (i.e., Ki values) and free maximum therapeutic exposure (Cmax) to calculate safety margins as a threshold of detection (>10) for eliminating the risk of drug-induced cardiac valvulopathy. In this paper, we provide additional recommendations for preclinical prediction of CVD risk based on clinical pharmacodynamic and pharmacokinetic data obtained from drugs with or without 5-HT2B receptor activation. Our investigations showed that 5-HT2B agonist affinity of molecules tested in an in vitro 5-HT2B cell-based functional assay, placed in perspective to their sustained plasma exposure (AUCs) and not to their peak plasma exposure, Cmax (i.e., maximum therapeutic exposure) provide a solid basis for interpreting 5-HT2B data, for calculating safety margins and then, accurately differentiate drugs associated with a clinical risk of CVD from those which are not (despite having some agonist 5-HT2B activity). In addition, we discuss the risk of multi-organ fibrosis linked to 5-HT2B receptor activation, often underestimated, however well reported in FAERS for 5-HT2B agonists. We believe that our recommendations have the potential to mitigate the risk for the clinical development of CVD and fibrosis.

13.
Front Neurosci ; 18: 1420601, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050672

RESUMO

Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment and a prominent contributor to dementia. The scarcity of available therapies for AD accentuates the exigency for innovative treatment modalities. Psilocybin, a psychoactive alkaloid intrinsic to hallucinogenic mushrooms, has garnered attention within the neuropsychiatric realm due to its established safety and efficacy in treating depression. Nonetheless, its potential as a therapeutic avenue for AD remains largely uncharted. This comprehensive review endeavors to encapsulate the pharmacological effects of psilocybin while elucidating the existing evidence concerning its potential mechanisms contributing to a positive impact on AD. Specifically, the active metabolite of psilocybin, psilocin, elicits its effects through the modulation of the 5-hydroxytryptamine 2A receptor (5-HT2A receptor). This modulation causes heightened neural plasticity, diminished inflammation, and improvements in cognitive functions such as creativity, cognitive flexibility, and emotional facial recognition. Noteworthy is psilocybin's promising role in mitigating anxiety and depression symptoms in AD patients. Acknowledging the attendant adverse reactions, we proffer strategies aimed at tempering or mitigating its hallucinogenic effects. Moreover, we broach the ethical and legal dimensions inherent in psilocybin's exploration for AD treatment. By traversing these avenues, We propose therapeutic potential of psilocybin in the nuanced management of Alzheimer's disease.

14.
Neuroimage ; 297: 120718, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964563

RESUMO

N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38980348

RESUMO

RATIONALE: Selective serotonin reuptake inhibitors (SSRIs) are the first choice of treatment for anxiety-like disorders. However, which aspects of anxiety are affected by SSRIs is not yet fully understood. OBJECTIVE: We aimed to systematically review the effect of six clinically effective SSRIs on four aspects of unconditioned anxiety: approach-avoidance behaviour (elevated plus maze), repetitive behaviour (marble burying), distress behaviour (ultrasonic vocalization), and activation of the autonomous nervous system (stress-induced hyperthermia). METHODS: We identified publications by searching Medline and Embase databases and assessed the risk of bias. A random effects meta-analysis was performed and moderator effects were analysed with Bayesian penalized meta-regression. RESULTS: Our search yielded 105 elevated plus maze, 63 marble burying, 11 ultrasonic vocalization, and 7 stress-induced hyperthermia articles. Meta-analysis suggested that SSRIs reduce anxiety-like behaviour in the elevated plus maze, marble burying and ultrasonic vocalization test and that effects are moderated by pre-existing stress conditions (elevated plus maze) and dose dependency (marble burying) but not by duration of treatment or type of SSRI. The reporting quality was low, publication bias was likely, and heterogeneity was high. CONCLUSION: SSRIs seem to reduce a broad range of unconditioned anxiety-associated behaviours. These results should be interpreted with caution due to a high risk of bias, likely occurrence of publication bias, substantial heterogeneity and limited moderator data availability. Our review demonstrates the importance of including bias assessments when interpreting meta-analysis results. We further recommend improving the reporting quality, the conduct of animal research, and the publication of all results regardless of significance.

16.
Mol Neurobiol ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963532

RESUMO

The comorbidity of anxiety and depression frequently occurs in patients with neuropathic pain. The ventrolateral orbital cortex (VLO) plays a critical role in mediating neuropathic pain and anxiodepression in rodents. Previous studies suggested that 5-HT6 receptors in the VLO are involved in neuropathic pain. Strong evidence supports a close link between 5-HT6 receptors and affective disorders such as depression and anxiety disorders. However, it remains unclear whether the 5-HT6 receptors in the VLO are involved in neuropathic pain-induced anxiodepression. Using a rat neuropathic pain model of spared nerve injury (SNI), we demonstrated that rats exhibited significant anxiodepression-like behaviors and the expression of VLO 5-HT6 receptors obviously decreased four weeks after SNI surgery. Microinjection of the 5-HT6 receptor agonist EMD-386088 into the VLO or overexpression of VLO 5-HT6 receptors alleviated anxiodepression-like behaviors. These effects were blocked by pre-microinjection of a selective 5-HT6 receptor antagonist (SB-258585) or inhibitors of AC (SQ-22536), PKA (H89), and MEK1/2 (U0126) respectively. Meanwhile, the expression of p-ERK, p-CREB, and BDNF in the VLO decreased four weeks after SNI surgery. Furthermore, administration of EMD-386088 upregulated the expression of BDNF, p-ERK, and p-CREB in the VLO of SNI rats, which were reversed by pre-injection of SB-258585. These findings suggest that activating 5-HT6 receptors in the VLO has anti-anxiodepressive effects in rats with neuropathic pain via activating AC-cAMP-PKA-MERK-CREB-BDNF signaling pathway. Accordingly, 5-HT6 receptor in the VLO could be a potential target for the treatment of the comorbidity of neuropathic pain and anxiodepression.

17.
Talanta ; 277: 126334, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838564

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) is a pivotal monoamine neurotransmitter, which is widely distributed in human brain for biological, physical and psychopathological processes. The content of 5-HT can support diagnose of various diseases. To selectively detect 5-HT is very important in clinical medicine. Here, a novel microbiosensor for 5-HT is studied on acupuncture needle. Molecularly imprinted film enwrapped 5-HT was electropolymerized onto bimetallic gold/platinum (Au/Pt) nanoparticles on acupuncture needle microelectrode (ANME). Au/Pt nanostructure exhibited active sites to catalyze the oxidation of 5-HT and bind the generated polymer. 5-HT can be enwrapped by the functional monomer of pyrrole (Py) in the process of electropolymerization with suitably electroactive conformation. Comparing with interfaces of single metal or molecularly imprinted layer, synergistic microbiosensor exhibit better performance for 5-HT. 5-HT can be adsorbed and catalytically oxidized by the imprinted cavities. Under optimized conditions, the peak current linearly increases with the concentration of 5-HT from 0.03 to 500 µM, and a detection limit of 0.0106 µM is obtained. The performance of this microbiosensor is competitive with previous studies. Furthermore, the prepared microbiosensor showed effective application to analyze 5-HT in human serum and urine. Interestingly, the microbiosensor expressed the real-time monitoring ability to 5-HT from stimulated PC12 cells by K+. The microbiosensor also exhibited high selectivity, stability and reproducibility, which is promising in view of the low price, fast response and simple operation.


Assuntos
Técnicas Eletroquímicas , Ouro , Agulhas , Platina , Serotonina , Serotonina/sangue , Serotonina/análise , Serotonina/urina , Ouro/química , Humanos , Técnicas Eletroquímicas/métodos , Platina/química , Impressão Molecular , Nanopartículas Metálicas/química , Propriedades de Superfície , Limite de Detecção , Técnicas Biossensoriais/métodos , Animais , Ratos , Microeletrodos
18.
Toxicol Lett ; 398: 55-64, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876450

RESUMO

Several fungi belonging to the genus Psilocybe, also called "magic mushrooms", contain the hallucinogenic drugs psilocybin and psilocin. They are chemically related to serotonin (5-HT). In addition to being abused as drugs, they are now also being discussed or used as a treatment option for depression. Here, we hypothesized that psilocybin and psilocin may act also on cardiac serotonin receptors and studied them in vitro in atrial preparations of our transgenic mouse model with cardiac myocytes-specific overexpression of the human 5-HT4 receptor (5-HT4-TG) as well as in human atrial preparations. Both psilocybin and psilocin enhanced the force of contraction in isolated left atrial preparations from 5-HT4-TG, increased the beating rate in isolated spontaneously beating right atrial preparations from 5-HT4-TG and augmented the force of contraction in the human atrial preparations. The inotropic and chronotropic effects of psilocybin and psilocin at 10 µM were smaller than that of 1 µM 5-HT on the left and right atria from 5-HT4-TG, respectively. Psilocybin and psilocin were inactive in WT. In the human atrial preparations, inhibition of the phosphodiesterase III by cilostamide was necessary to unmask the positive inotropic effects of psilocybin or psilocin. The effects of 10 µM psilocybin and psilocin were abrogated by 10 µM tropisetron or by 1 µM GR125487, a more selective 5-HT4 receptor antagonist. In summary, we demonstrated that psilocin and psilocybin act as agonists on cardiac 5-HT4 receptors.


Assuntos
Átrios do Coração , Camundongos Transgênicos , Psilocibina , Receptores 5-HT4 de Serotonina , Psilocibina/farmacologia , Psilocibina/análogos & derivados , Animais , Humanos , Receptores 5-HT4 de Serotonina/metabolismo , Receptores 5-HT4 de Serotonina/genética , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Alucinógenos/farmacologia , Alucinógenos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Camundongos , Agonistas do Receptor 5-HT4 de Serotonina/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Feminino
19.
Neuropharmacology ; 257: 110033, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866066

RESUMO

The anteroventral bed nucleus of stria terminalis (avBNST) is a limbic forebrain region involved in the regulation of anxiety, and expresses GABAB receptors, which are located at both pre- and post-synaptic sites. However, it is unclear how blockade of these receptors affects anxiety-like behaviors, particularly in Parkinson's disease (PD)-related anxiety. In the present study, unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, and increased GABA release and decreased glutamate release in the avBNST, as well as decreased level of dopamine (DA) in the basolateral amygdala (BLA). Intra-avBNST injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both sham and 6-OHDA rats. Intra-avBNST injection of CGP36216 inhibited the GABAergic neurons and increased GABA/glutamate ratio in the avBNST and increased levels of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 produced opposite effects on the firing activity of avBNST GABAergic neurons and levels of the neurotransmitters in the avBNST and BLA. Moreover, the doses of the antagonists producing significant behavioral effects in 6-OHDA rats were lower than those in sham rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in 6-OHDA rats. Altogether, these findings suggest that pre- and post-synaptic GABAB receptors in the avBNST are implicated in PD-related anxiety-like behaviors, and degeneration of the nigrostriatal pathway enhances functions and/or upregulates expression of these receptors.


Assuntos
Ansiolíticos , Ansiedade , Antagonistas de Receptores de GABA-B , Oxidopamina , Transtornos Parkinsonianos , Receptores de GABA-B , Núcleos Septais , Animais , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Masculino , Ansiedade/metabolismo , Antagonistas de Receptores de GABA-B/farmacologia , Ansiolíticos/farmacologia , Ratos , Receptores de GABA-B/metabolismo , Oxidopamina/toxicidade , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ratos Sprague-Dawley , Serotonina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Compostos Organofosforados
20.
Artigo em Inglês | MEDLINE | ID: mdl-38856765

RESUMO

BACKGROUND: Current treatment of major depressive disorder is facing challenges, including a low remission rate, late onset of efficacy, and worsening severity due to comorbid symptoms such as psychosis and cognitive dysfunction. Serotonin (5-HT) neurotransmission is involved in a wide variety of psychiatric diseases and its potential as a drug target continues to attract attention. OBJECTIVES: The present study elucidates the effects of a novel 5-HT modulator, DSP-6745, on depression and its comorbid symptoms. RESULTS: In vitro radioligand binding and functional assays showed that DSP-6745 is a potent inhibitor of 5-HT transporter and 5-HT2A, 5-HT2C, and 5-HT7 receptors. In vivo, DSP-6745 (6.4 and 19.1 mg/kg as free base, p.o.) increased the release of not only 5-HT, norepinephrine, and dopamine, but also glutamate in the medial prefrontal cortex. The results of in vivo mouse phenotypic screening by SmartCube® suggested that DSP-6745 has a behavioral signature combined with antidepressant-, anxiolytic-, and antipsychotic-like signals. A single oral dose of DSP-6745 (6.4 and 19.1 mg/kg) showed rapid antidepressant-like efficacy in the rat forced swim test, even at 24 h post-dosing, and anxiolytic activity in the rat social interaction test. Moreover, DSP-6745 (12.7 mg/kg, p.o.) led to an improvement in the apomorphine-induced prepulse inhibition deficit in rats. In the marmoset object retrieval with detour task, which is used to assess cognitive functions such as attention and behavioral inhibition, DSP-6745 (7.8 mg/kg, p.o.) enhanced cognition. CONCLUSIONS: These data suggest that DSP-6745 is a multimodal 5-HT receptor antagonist and a 5-HT transporter inhibitor and has the potential to be a rapid acting antidepressant with efficacies in mitigating the comorbid symptoms of depression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...