Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mater Today Bio ; 17: 100441, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388462

RESUMO

Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.

2.
J Adv Res ; 36: 223-247, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35127174

RESUMO

Background: Skin cancer has been the leading type of cancer worldwide. Melanoma and non-melanoma skin cancers are now the most common types of skin cancer that have been reached to epidemic proportion. Based on the rapid prevalence of skin cancers, and lack of efficient drug delivery systems, it is essential to surge the possible ways to prevent or cure the disease. Aim of review: Although surgical modalities and therapies have been made great progress in recent years, however, there is still an urgent need to alleviate its increased burden. Hence, understanding the precise pathophysiological signaling mechanisms and all other factors of such skin insults will be beneficial for the development of more efficient therapies. Key scientific concepts of review: In this review, we explained new understandings about onset and development of skin cancer and described its management via polymeric micro/nano carriers-based therapies, highlighting the current key bottlenecks and future prospective in this field. In therapeutic drug/gene delivery approaches, polymeric carriers-based system is the most promising strategy. This review discusses that how polymers have successfully been exploited for development of micro/nanosized systems for efficient delivery of anticancer genes and drugs overcoming all the barriers and limitations associated with available conventional therapies. In addition to drug/gene delivery, intelligent polymeric nanocarriers platforms have also been established for combination anticancer therapies including photodynamic and photothermal, and for theranostic applications. This portfolio of latest approaches could promote the blooming growth of research and their clinical availability.


Assuntos
Nanoestruturas , Neoplasias Cutâneas , Biologia , Sistemas de Liberação de Medicamentos , Humanos , Nanoestruturas/química , Polietilenoglicóis/química , Polímeros/química , Neoplasias Cutâneas/tratamento farmacológico
3.
Acta Pharm Sin B ; 12(1): 451-466, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127398

RESUMO

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

4.
Acta Pharmaceutica Sinica B ; (6): 451-466, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-929306

RESUMO

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

5.
Acta Pharm Sin B ; 11(5): 1329-1340, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094837

RESUMO

5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.

6.
Acta Pharmaceutica Sinica B ; (6): 1329-1340, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-881202

RESUMO

5-Aminolevulinic acid (5-ALA) has been approved for clinical photodynamic therapy (PDT) due to its negligible photosensitive toxicity. However, the curative effect of 5-ALA is restricted by intracellular biotransformation inactivation of 5-ALA and potential DNA repair of tumor cells. Inspired by the crucial function of iron ions in 5-ALA transformation and DNA repair, a liposomal nanomedicine (MFLs@5-ALA/DFO) with intracellular iron ion regulation property was developed for boosting the PDT of 5-ALA, which was prepared by co-encapsulating 5-ALA and DFO (deferoxamine, a special iron chelator) into the membrane fusion liposomes (MFLs). MFLs@5-ALA/DFO showed an improved pharmaceutical behavior and rapidly fused with tumor cell membrane for 5-ALA and DFO co-delivery. MFLs@5-ALA/DFO could efficiently reduce iron ion, thus blocking the biotransformation of photosensitive protoporphyrin IX (PpIX) to heme, realizing significant accumulation of photosensitivity. Meanwhile, the activity of DNA repair enzyme was also inhibited with the reduction of iron ion, resulting in the aggravated DNA damage in tumor cells. Our findings showed MFLs@5-ALA/DFO had potential to be applied for enhanced PDT of 5-ALA.

8.
World Neurosurg X ; 5: 100069, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32095783

RESUMO

BACKGROUND: In glioma surgery, 5-aminolevulinic acid (5-ALA) fluorescence reflects tumor infiltration, and fluorescence-assisted resection correlates with higher removal rates and improved progression-free survival. Recent studies report that a sizable proportion of brain metastases exhibit peritumoral infiltration on the cellular level. There is little information regarding whether 5-ALA is useful to guide surgery in the peritumoral zone in metastases. The aim of this study was to assess histologically whether 5-ALA fluorescence accurately reflects metastatic brain infiltration. METHODS AND MATERIALS: Fluorescence-assisted tumor resection was performed in 27 patients with brain metastases. Patients received 20 mg/kg 5-ALA 3 hours before anesthesia. After resection, biopsy specimens of the surrounding parenchyma were analyzed for 5-ALA fluorescence and histologic evidence of infiltrating tumor cells. The correlation between 5-ALA positivity and immunohistochemical evidence of tumor in the peritumoral zone was also assessed. RESULTS: Of 27 metastases, 23 (85%) were 5-ALA positive. For qualitative tissue analysis, 110 of 125 samples were collected. Metastatic infiltration was present in 49 samples with faint or red fluorescence; 33 samples without fluorescence were tumor-free. The presence of metastatic infiltration correlated with fluorescence (P < 0.001). Tumor infiltration correlated with fluorescence (blue fluorescence 0.09% ± 0.04% and red or faint fluorescence 3.26%; P = 0.003). CONCLUSIONS: Infiltration of surrounding brain tissue is a common finding in brain metastases in selected primary tumors. 5-ALA fluorescence correlates with tumor cell infiltration and might guide more radical resection.

9.
Front Surg ; 6: 41, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380388

RESUMO

5-Aminolevulinic acid (5-ALA) induced fluorescence to augment surgical resection for high grade glioma has become a standard of care. Protoporphyrin IX (PpIX) visibility is however subject to the variability of the single tumor expression and to the interobserver interpretation. We therefore hypothesized that in different glioma cell lines with variable 5-ALA induced fluorescence, the signal can be pharmacologically increased. We therefore analyzed in three different GBM cell lines, with different expression of epidermal growth factor receptor (EGFR), the variability of 5-ALA induced PpIX fluorescence after the pharmacological blockade at different steps of PpIX breakdown and influencing the outbound transport of PpIX. Using flow cytometry, fluorescence microplate reader, and confocal microscopy the PpIX fluorescence was analyzed after exposure to tin protoporphyrin IX (SnPP), deferoxamine (DFO), and genistein. We furthermore constructed a microscope (Qp9-microscope) being able to measure quantitatively the concentration of PpIX. These values were compared with the extraction of PpIX in tumor biopsy taken during the GBM surgery. Although all three cell lines showed an increase to 5-ALA induced fluorescence their baseline activity was different. Treatment with either SnPP, DFO and genistein was able to increase 5-ALA induced fluorescence. Qp9-microscopy of tumor sample produced a color coded PpIX concentration map which was overlaid on the tumor image. The PpIX extraction from tumor sample analyzed using the plate reader gave lower values of the concentration, as compared to the expected values of the Qp9-microscope, however still in the same decimal range of µg/mL. This may be due to homogenization of the values during extraction and cell disaggregation. In conclusion pharmacological augmentation in GBM cell lines of PpIX signal is possible. A quantitative PpIX map for surgery is feasible and may help refine surgical excision. Further correlations of tumor tissue samples and Qp9-microscopy is needed, prior to develop an intraoperative surgical adjunct to the already existing 5-ALA induced surgery.

10.
World Neurosurg X ; 3: 100022, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31225516

RESUMO

BACKGROUND: Despite the most recent surgical aids and tools, surgical removal of infiltrating brain tumors remains a challenge. Unclear margins, edematous areas, and infiltrative behavior are the main causes for failing gross total removals. Also, excessive resection of peri-tumoral tissue often carries risks of damaging the nearby functioning cortical and subcortical structures with an unacceptable decrease in patient's quality of life and postoperative functional status, and the risk of making patients not eligible to adjuvant treatments. Awake surgery and intraoperative magnetic resonance imaging (ioMRI) are among the most effective aids in preventing damage to functional brain while maximizing the extent of resection. METHODS: We present our series of 46 patients operated on at Southmead Hospital (North Bristol NHS Trust) in between July 2014 and February 2017 using ioMRI plus or minus awake surgery. Setting, patient features, indications, type and size of tumors, surgical times, extent of resection, morbidity, and survival are analyzed and discussed. RESULTS: Overall, ioMRI check led to a +43% resections in Group 1 and +58% in Group 2. In grade 2 tumors, GTR was 46% in Group 1 and 55% in Group 2 (41% in control group). In grade 3 tumors, GTR was 57% in Group 1 and 66% in Group 2 (30% in control group). In Grade 4 tumors, GTR was 63% in Group 1, 66% in Group 2 (36% in control group). In terms of theatre occupation, the use of ioMRI added 1/2 operative session; the addition of awake surgery implied the use of another 1/2 operative session. Morbidity did not differ among the groups, with low incidence of permanent post-operative deficits (<5%). Group 2 OS was statistically longer when compared to the control group. CONCLUSIONS: Using ioMRI together with awake surgery is demanding for the anesthetic team, staff nurses, and for the patient. Nevertheless, low morbidity, greater total resections rates, and longer survival suggest its use is effective in making more approachable gliomas of all grades that we would consider "complex" due to their intrinsic features or locations.

12.
Arab J Urol ; 15(2): 100-109, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29071138

RESUMO

OBJECTIVE: To assess the diagnostic accuracy and safety of photodynamic diagnosis (PDD) in upper urinary tract urothelial carcinoma (UUTUC). MATERIALS AND METHODS: A systematic literature search was conducted. Included studies were assessed for the risks of bias and quality using appropriate tools. Dedicated data extraction forms were used. Diagnostic accuracy in terms of sensitivity and specificity were quoted whenever provided by individual studies. A combined toxicity profile of 5-aminolevulinic acid (5ALA) was given after reviewing individual studies. RESULTS: In all, 17 studies were identified. After screening seven studies were included involving a total of 194 patients. None of the studies were randomised. All the available studies were of low-to-moderate quality. The largest available study, with 106 patients, reported a sensitivity of 95.8% and 53.5% for PDD and white-light (WL) ureterorenoscopy (URS) respectively, with a statistically significant difference. The specificity was 96.6% for PDD and 95.2% for WL-URS with no statistical significance. PDD showed better ability in detecting carcinoma in situ and dysplasia. One study compared PDD to computed tomography urogram (CTU) and found PDD to have better sensitivity and statistically significantly better specificity. 5ALA-associated toxicity was minor in nature and hypotension was the most common adverse event. CONCLUSION: PDD in UUTUC appears to be more accurate than WL-URS and CTU, with no significant toxicity. Larger scale randomised trials are needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...