Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Carcinog ; 63(7): 1260-1274, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607240

RESUMO

DNA methylation, an epigenetic regulatory mechanism dictating gene transcription, plays a critical role in the occurrence and development of cancer. However, the molecular underpinnings of LINC00987 methylation in the regulation of lung adenocarcinoma (LUAD) remain elusive. This study investigated LINC00987 expression in LUAD patients through analysis of The Cancer Genome Atlas data sets. Quantitative real-time polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization assays were used to assess LINC00987 expression in LUAD. The bisulfite genomic sequence PCR (BSP) assay was used to determine the methylation levels of the LINC00987 promoter. The interaction between LINC00987 and SND1 was elucidated via immunoprecipitation and RNA pull-down assays. The functional significance of LINC00987 and SND1 in Calu-3 and NCI-H1688 cells was evaluated in vitro through CCK-8, EdU, Transwell, flow cytometry, and vasculogenic mimicry (VM) tube formation assays. LINC00987 expression decreased in LUAD concomitant with hypermethylation of the promoter region, while hypomethylation of the LINC00987 promoter in LUAD tissues correlated with tumor progression. Treatment with 5-Aza-CdR augmented LINC00987 expression and inhibited tumor growth. Mechanistically, LINC00987 overexpression impeded LUAD progression and VM through direct binding with SND1, thereby facilitating its phosphorylation and subsequent degradation. Additionally, overexpression of SND1 counteracted the adverse effects of LINC00987 downregulation on cell proliferation, apoptosis, cell migration, invasion, and VM in LUAD in vitro. In conclusion, this pioneering study focuses on the expression and function of LINC00987 and reveals that hypermethylation of the LINC00987 gene may contribute to LUAD progression. LINC00987 has emerged as a potential tumor suppressor gene in tumorigenesis through its binding with SND1 to facilitate its phosphorylation and subsequent degradation.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Metilação de DNA , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , RNA Longo não Codificante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Apoptose , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Endonucleases/genética , Endonucleases/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética
2.
Transl Cancer Res ; 13(1): 191-201, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38410235

RESUMO

Background: Glioma is the most common tumor originating in the brain and is difficult to cure. New York esophageal squamous cell carcinoma 1 (NY-ESO-1) is a promising cancer testis antigen (CTA) for tumor immunotherapy, and heat shock proteins (HSPs) can promote the antigen presentation of chaperoned peptides. This study investigates the therapeutic potential of HSP70 and NY-ESO-1 epitope fusion protein for glioma. Methods: Recombinant HSP70 protein was purified and fused to NY-ESO-1 epitope to generate HSP70/NY-ESO-1 p86-94. NY-ESO-1 expression was induced in U251 glioma cells via 5-Aza-2'-deoxycytidine (5-Aza-CdR) treatment. Dendritic cells (DCs) loaded with HSP70/NY-ESO-1 p86-94 or NY-ESO-1 protein stimulated NY-ESO-1-specific cytotoxic T lymphocytes (CTLs). The killing effect of NY-ESO-1 specific CTLs on U251 cells was detected by lactate dehydrogenase (LDH). Results: 5-Aza-CdR successfully induced NY-ESO-1 expression in U251 cells. NY-ESO-1-stimulated CTLs lysed more significantly with NY-ESO-1-positive U251 cells than with NY-ESO-1-negative cells. The immune response stimulated by a DC-based vaccine of HSP70/NY-ESO-1 p86-94 fusion protein was significantly enhanced compared with that induced by NY-ESO-1 alone. Conclusions: These findings indicate that the HSP70/NY-ESO-1 p86-94 may significantly enhance CTLs-mediated cytotoxicity and targeting ability against NY-ESO-1-expressing tumors in vitro. 5-Aza-CdR treatment with HSP70 binding to tumor antigen is a new strategy for immunotherapy of the tumors with poor CTA expression.

3.
Asian Pac J Cancer Prev ; 24(6): 1841-1854, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378911

RESUMO

Epigenetic changes such as histone deacetylation and DNA methylation play to regulate gene expression. DNA methylation plays a major role in cancer induction via transcriptional silencing of critical regulators such as tumor suppressor genes (TSGs). One approach to inhibit TSGs inactivation is to use chemical compounds, DNA methyltransferase inhibitors (DNMTIs). Previously, we investigated the effect of 5-aza-2'-deoxycytidine (5 AZA CdR or decitabine) on colon cancer and hepatocellular carcinoma cell lines. The present study aimed to investigate the effect of 5 AZA CdR on extrinsic (DR4, DR5, FAS, FAS-L, and TRAIL genes), intrinsic [pro- (Bax, Bak, and Bim) and anti- (Bcl-2, Bcl-xL, and Mcl-1) apoptotic genes], and JAK/STAT (SOCS1, SOCS3, JAK1, JAK2, STAT3, STAT5A, and STAT5B genes) pathways in neuroblastoma (IMR-32, SK-N-AS, UKF-NB-2, UKF-NB-3, and UKF-NB-4) and glioblastoma (SF-767, SF-763, A-172, U-87 MG, and U-251 MG) cell lines. MATERIALS AND METHODS: The neuroblastoma and glioblastoma cells were cultured and treated with 5 AZA CdR. To determine cell viability, cell apoptosis, and the relative gene expression level, MTT assay, flow cytometry assay, and qRT-PCR were done respectively. RESULTS: 5 AZA CdR changed the expression level of the genes of the extrinsic, intrinsic, and JAK/STAT pathways by which induced cell apoptosis and inhibited cell growth in neuroblastoma and glioblastoma cell lines. CONCLUSION: 5 AZA CdR can play its role through extrinsic, intrinsic, and JAK/STAT pathways to induce cell apoptosis.


Assuntos
Glioblastoma , Neuroblastoma , Humanos , Decitabina/farmacologia , Janus Quinases/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transdução de Sinais , Fatores de Transcrição STAT/genética , Azacitidina/farmacologia , Linhagem Celular , Metilação de DNA , Desoxicitidina , Linhagem Celular Tumoral
4.
Acta Pharm Sin B ; 13(5): 2086-2106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250150

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

5.
Eur J Pharmacol ; 945: 175612, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822455

RESUMO

Dysregulated epigenetic modifications are common in lung cancer but have been reversed using demethylating agent like 5-Aza-CdR. 5-Aza-CdR induces/upregulates the NY-ESO-1 antigen in lung cancer. Therefore, we investigated the molecular mechanisms accompanied with the epigenetic regulation of NY-ESO-1 in 5-Aza-CdR-treated NCI-H1975 cell line. We showed significant induction of the NY-ESO-1 protein (**p < 0.0097) using Cellular ELISA. Bisulfite-sequencing demonstrated 45.6% demethylation efficiency at the NY-ESO-1 gene promoter region and RT-qPCR analysis confirmed the significant induction of NY-ESO-1 at mRNA level (128-fold increase, *p < 0.050). We then investigated the mechanism by which 5-Aza-CdR inhibits cell proliferation in the NCI-H1975 cell line. Upregulation of the death receptors TRAIL (2.04-fold *p < 0.011) and FAS (2.1-fold *p < 0.011) indicate activation of the extrinsic apoptotic pathway. The upregulation of Voltage-dependent anion-selective channel protein 1 (1.9-fold), Major vault protein (1.8-fold), Bax (1.16-fold), and Cytochrome C (1.39-fold) indicate the activation of the intrinsic pathway. We also observed the differential expression of protein Complement C3 (3.3-fold), Destrin (-5.1-fold), Vimentin (-1.7-fold), Peroxiredoxin 4 (-1.6-fold), Fascin (-1.8-fold), Heme oxygenase-2 (-0.67-fold**p < 0.0055), Hsp27 (-0.57-fold**p < 0.004), and Hsp70 (-0.39-fold **p < 0.001), indicating reduced cell growth, cell migration, and metastasis. The upregulation of 40S ribosomal protein S9 (3-fold), 40S ribosomal protein S15 (4.2-fold), 40S ribosomal protein S18 (2.5-fold), and 60S ribosomal protein L22 (4.4-fold) implied the induction of translation machinery. These results reiterate the decisive role of 5-Aza-CdR in lung cancer treatment since it induces the epigenetic regulation of NY-ESO-1 antigen, inhibits cell proliferation, increases apoptosis, and decreases invasiveness.


Assuntos
Epigênese Genética , Neoplasias Pulmonares , Humanos , Decitabina/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Membrana/metabolismo , Azacitidina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Apoptose , Anticorpos/metabolismo , Linhagem Celular Tumoral
6.
Acta Pharmaceutica Sinica B ; (6): 2086-2106, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982827

RESUMO

As confusion mounts over RNA isoforms involved in phenotypic plasticity, aberrant CpG methylation-mediated disruption of alternative splicing is increasingly recognized as a driver of intratumor heterogeneity (ITH). Protease serine 3 (PRSS3), possessing four splice variants (PRSS3-SVs; PRSS3-V1-V4), is an indispensable trypsin that shows paradoxical effects on cancer development. Here, we found that PRSS3 transcripts and their isoforms were divergently expressed in lung cancer, exhibiting opposing functions and clinical outcomes, namely, oncogenic PRSS3-V1 and PRSS3-V2 versus tumor-suppressive PRSS3-V3, by targeting different downstream genes. We identified an intragenic CpG island (iCpGI) in PRSS3. Hypermethylation of iCpGI was mediated by UHRF1/DNMT1 complex interference with the binding of myeloid zinc finger 1 (MZF1) to regulate PRSS3 transcription. The garlic-derived compound diallyl trisulfide cooperated with 5-aza-2'-deoxycytidine to exert antitumor effects in lung adenocarcinoma cells through site-specific iCpGI demethylation specifically allowing MZF1 to upregulate PRSS3-V3 expression. Epigenetic silencing of PRSS3-V3 via iCpGI methylation (iCpGIm) in BALF and tumor tissues was associated with early clinical progression in patients with lung cancer but not in those with squamous cell carcinoma or inflammatory disease. Thus, UHRF1/DNMT1-MZF1 axis-modulated site-specific iCpGIm regulates divergent expression of PRSS3-SVs, conferring nongenetic functional ITH, with implications for early detection of lung cancer and targeted therapies.

7.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-986250

RESUMO

@#[摘 要] 目的:探讨EB病毒核抗原1(EBNA1) mRNA修饰的DC(EBNA1-DC)诱导的淋巴细胞联合甲基化抑制剂5-Aza-CdR对鼻咽癌C666-1细胞的杀伤作用。方法:以构建的EBNA1-pCDNA3.1质粒为模板,体外转录获得EBNA1 mRNA,通过脂质体转染至健康人外周血来源DC,构建EBNA1-DC疫苗。流式细胞术检测转染后DC表型及5-Aza-CdR处理后的C666-1细胞凋亡情况。实时无标记动态细胞分析技术检测EBNA1-DC疫苗诱导的淋巴细胞联合5-Aza-CdR的特异性抗肿瘤活性。结果:转染EBNA1 mRNA后EBNA1-DC表面EBNA1阳性率为(59.3±5.85)%,HLA-DR的表达与未转染DC相比显著升高[(84.9±5.5)% vs (68.0±5.8)%,P=0.026],CD80的表达也显著升高[(88.2±3.9)% vs (61.1±4.4)%,P=0.015]。低剂量5-Aza-CdR处理后的C666-1细胞凋亡情况与未处理的细胞相比无显著差异。经低浓度5-Aza-CdR预处理的C666-1细胞中IRF7基因表达与未处理的细胞相比显著升高(P=0.000 1)。与空载的DC相比,EBNA1-DC诱导的淋巴细胞对EBV阳性表达的C666-1细胞具有更强的特异性杀伤活性(P=0.049);经低浓度5-Aza-CdR预处理的C666-1细胞对EBNA1-DC诱导的特异性免疫杀伤更敏感(P=0.019)。结论:5-Aza-CdR与EBNA1-DC疫苗联合可显著增强对C666-1细胞的特异性免疫杀伤,本研究为开拓以mRNA为基础的DC疫苗及其在临床综合治疗中的应用转化提供前期研究基础。

8.
Biomed Pharmacother ; 154: 113623, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081289

RESUMO

BACKGROUND: 5-Aza-2'-deoxycytidine (5-Aza-CdR) is a demethylating agent that has various biological effects related to DNA methylation. DNA methylation plays important roles in learning and memory. We have reported that 5-Aza-CdR improved the performance of mice in the water maze and step-down tests. Some behaviours have been well recognized to be mediated by neurogenesis in the hippocampus. The Notch signalling pathway plays a key role in adult hippocampal neurogenesis. In this study, we examined whether 5-Aza-CdR (DNA methyltransferase inhibitor) affects neurogenesis and Notch1 expression. METHODS: The learning and memory behaviour of mice was evaluated by a conditioned avoidance learning 24 h after 5-Aza-CdR treatment. The mRNA and protein expression levels of Notch1 and HES1 were measured by real-time PCR and Western blotting. The 5-bromo-2'-deoxyuridine (BrdU)-positive cells and the expression of Notch1 in the hippocampal DG were observed through laser confocal microscopy. To further clarify whether 5-Aza-CdR affects behaviour through neurogenesis, the expression level of Notch1, cell viability and cell cycle were analysed using the HT22 cell line. RESULTS: The behaviour in conditioned avoidance learning was improved, while neurogenesis and the Notch1 pathway were increased in the hippocampus of mice that were injected with 5-Aza-CdR. In vitro experiments showed that 5-Aza-CdR increased the expression of the Notch1 pathway and upregulated S-phase in the cell cycle and cell viability. CONCLUSIONS: Our results suggest that the effect of 5-Aza-CdR on behaviour may be related to an increase in neurogenesis with upregulation of the Notch1 pathway in the hippocampus.


Assuntos
Azacitidina , Neurogênese , Animais , Azacitidina/farmacologia , Metilação de DNA , Decitabina/farmacologia , Hipocampo , Camundongos
9.
Cancer Lett ; 548: 215899, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36087682

RESUMO

The development of more effective targeted therapies for hepatocellular carcinoma (HCC) patients due to its aggressiveness is urgently needed. DNA methyltransferase inhibitors (DNMTis) represented the first clinical breakthrough to target aberrant cancer epigenomes. However, their clinical efficacies are still limited, in part due to an "epigenetic switch" in which a large group of genes that are demethylated by DNMTi treatment remain silenced by polycomb repressive complex 2 (PRC2) occupancy. EZH2 is the member of PRC2 that catalyzes the placement of H3K27me3 marks. EZH2 overexpression is correlated with poor HCC patient survival. We tested the combination of a DNMTi (5-aza-2'-deoxycytidine, DAC) and the EZH2 inhibitor (EZH2i) GSK126 in human HCC cell lines on drug sensitivity, DNA methylation, nucleosome accessibility, and gene expression profiles. Compared with single agent treatments, all HCC cell lines studied showed increased sensitivity after receiving both drugs concomitant with prolonged anti-proliferative changes and sustained reactivation of nascently-silenced genes. The increased number of up-regulated genes after combination treatment correlated with prolonged anti-proliferation effects and increased nucleosome accessibility. Combination treatments also activate demethylated promoters that are repressed by PRC2 occupancy. Furthermore, 13-31% of genes down-regulated by DNA methylation in primary HCC tumors were reactivated through this combination treatment scheme in vitro. Finally, the combination treatment also exacerbates anti-tumor immune responses, while most of these genes were downregulated in over 50% of primary HCC tumors. We have linked the anti-tumor effects of DAC and GSK126 combination treatments to detailed epigenetic alterations in HCC cells, identified potential therapeutic targets and provided a rationale for treatment efficacy for HCC patients.


Assuntos
Carcinoma Hepatocelular , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , DNA , Decitabina/farmacologia , Decitabina/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nucleossomos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
10.
Cancer Manag Res ; 13: 4497-4507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113175

RESUMO

BACKGROUND: Many studies have reported that the inflammatory immune response related to TLR9 signaling activation participates in tumor development and affects the treatment outcome. RUNX3 functions as a tumor suppressor by regulating DNA methylation. RUNX3 protein plays an important role in TGF-ß signaling pathway that is involved in tumor growth inhibition and apoptosis. At present, radiotherapy is still an important treatment in lung cancer, which induces immune response and affects the therapeutic outcome. The role of TLR9 signaling activation and RUNX3 in this process is not clear. METHODS: In this study, we investigated the expression of TLR9 in tumor and RUNX3 in surrounding tissues by immunohistochemical methods and analyzed the relationship on postoperative survival in lung cancer. RESULTS: We found that the high expression of TLR9 was the risk factor in postoperative survival of lung cancer with no difference in lifetime. The high expression of RUNX3 in lung cancer with TLR9 signaling activation was in favor of progression-free survival and overall survival in postoperative radiotherapy. It suggested that RUNX3 played an important role in lung cancer radiotherapy. In order to determine the effect of RUNX3 in lung cancer radiation with TLR9 signaling activation, we introduced 5-Aza-2'-deoxycytidine (5-Aza-CdR) and exposed lung cancer A459 cells repeatedly. The high expression of RUNX3 especially RUNX3-B in cells treated with 5-Aza-CdR was observed. We examined that 5-Aza-CdR induced more cell blocking in G2/M phase in combining irradiation. CONCLUSION: The result implied that it was feasible to improve radiosensitivity of lung cancer with TLR9 signaling activation by increasing RUNX3 expression, and 5-Aza-CdR was an option in this process.

11.
Toxicol Res (Camb) ; 9(4): 519-529, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32905139

RESUMO

Growing evidence indicates that arsenic can cause long-lasting and irreversible damage to the function of the human immune system. It is known that forkhead box protein 3(Foxp3), which is specifically expressed in regulatory T cells (Tregs), plays a decisive role in immunoregulation and is regulated by DNA methylation. While evidence suggests that epigenetic regulated Foxp3 is involved in the immune disorders caused by arsenic exposure, the specific mechanism remains unclear. In this study, after primary human lymphocytes were treated with different doses of NaAsO2, our results showed that arsenic induced the high expression of DNMT1 and Foxp3 gene promoter methylation level, thereby inhibiting the expression levels of Foxp3, followed by decreasing Tregs and reducing related anti-inflammatory cytokines, such as interleukin 10 (IL-10) and interleukin 10 (IL-35), and increasing the ratio of CD4+/CD8+ T cells in lymphocytes. Treatment with DNA methyltransferase inhibitor 5-Aza-CdR can notably inhibit the expression of DNMT1, effectively restoring the hypermethylation of the Foxp3 promoter region in primary human lymphocytes and upregulating the expression levels of Foxp3, balancing the ratio of CD4+/CD8+ T cells in lymphocytes. It also activates the secretion of anti-inflammatory cytokines and restores the immune regulatory functions of Tregs. In conclusion, our study provides limited evidence that DNMT1-mediated Foxp3 gene promoter hypermethylation is involved in immune dysfunction caused by arsenic in primary human lymphocytes. The study can provide a scientific basis for further understanding the arsenic-induced immune dysfunction in primary human lymphocytes.

12.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32193333

RESUMO

Human breast cancer cells exhibit considerable diversity in the methylation status of genomic DNA CpGs that regulate metastatic transcriptome networks. In this study, we identified human Sipa1 promoter-proximal elements that contained a CpG island and demonstrated that the methylation status of the CpG island was inversely correlated with SIPA1 protein expression in cancer cells. 5-Aza-2'-deoxycytidine (5-Aza-CdR), a DNA methyltransferase inhibitor, promoted the expression of Sipa1 in the MCF7 breast cancer cells with a low level of SIPA1 expression. On the contrary, in MDA-MB-231 breast cancer cells with high SIPA1 expression levels, hypermethylation of the CpG island negatively regulated the transcription of Sipa1 In addition, the epithelial-mesenchymal transition (EMT) was reversed after knocking down Sipa1 in MDA-MB-231 cells. However, the EMT was promoted in MCF7 cells with over-expression of SIPA1 or treated with 5-Aza-CdR. Taken together, hypomethylation of the CpG island in Sipa1 promoter-proximal elements could enhance SIPA1 expression in breast cancer cells, which could facilitate EMT of cancer cells, possibly increasing a risk of cancer cell metastasis in individuals treated with 5-Aza-CdR.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Azacitidina/farmacologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Ilhas de CpG/genética , Metilação de DNA/genética , Decitabina/farmacologia , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos
13.
Galen Med J ; 9: e1899, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34466608

RESUMO

BACKGROUND: Dysregulation of the cell cycle has been reported in various cancers. Inactivation of the cyclin-dependent kinases inhibitors (CDKIs), CIP/KIP family, such as p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 genes because of hypermethylation has been shown in several cancers. Treatment with DNA demethylating agent 5-aza-2'-deoxycytidine (5-Aza-CdR) has been indicated that affect genomic methylation and resulting in silenced genes reactivation in colon cancer. Previously, we evaluated the effect of 5-Aza-CdR on DNA methyltransferase 1 (DNMT1) gene expression in hepatocellular carcinoma (HCC) which encouraged us to design the current study. The present study aimed to evaluate the effect of 5-Aza-CdR on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, and DNAT1 genes expression, cell growth inhibition and apoptosis induction in colon cancer SW 480 and SW 948 cell lines. MATERIALS AND METHODS: The effect of 5-aza-CdR on the SW 480 and SW 948 cells growth, apoptosis induction and genes expression were assessed by MTT assay, flow cytometry, and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis respectively. RESULTS: 5-aza-CdR inhibited cell growth as time-and dose-dependent manner significantly (P<0.001). The agent reactivated p15INK4, p16INK4, p18INK4, and p19INK4 genes expression and induced apoptosis at a concentration of 5 µM significantly. Besides, 5-aza-CdR had a more significant effect on the SW 480 cell line in comparison to SW 948 cell line. CONCLUSION: 5-Aza-CdR plays a key role in the up-regulation of p21Cip1/ Waf1/Sdi1, p27Kip1, and p57Kip2 and down-regulation of DNMT1 genes resulting in cell growth inhibition and apoptosis induction.

14.
Cancer Manag Res ; 11: 9517-9528, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31807076

RESUMO

OBJECTIVE: To evaluate 5-Aza-CdR's inhibited effects on migration, proliferation, and apoptosis in colon cancer cells and its potential mechanisms. METHODS: HCT-116, SW480, and SW620 were divided into HCT116 group, HCT116+5-Aza-CdR group, SW480 group, SW480+5-Aza-CdR group, SW620 group and SW620+5-Aza according to experimental needs. MTT test was chosen to investigate cell proliferation; Transwell test was used to evaluate cell migration; scratch assay was used to investigate cell invasion; flow cytometry was used to investigate apoptosis; immunofluorescence assay was used to investigate the protein level of DNMT1 and RASSF1A in cells; qRT-PCR was used to examine DNMT1, RASSF1A, RAS, Raf1, MEK, Grb2 and ERK transcription levels. RESULTS: Compared with HCT116 group, 5-Aza-CdR+HCT116 group inhibited cell proliferation, increased apoptosis rate, decreased invasive ability, decreased DNMT1 expression, increased expression of RASSF1A, decreased expression of RAS, Raf1, MEK, Grb2 and ERK. SW480 was compared with 5-Aza-CdR+SW480 group and SW620 group with 5-Aza-CdR+SW620 group. Their change trend of detection index was similar to that in HCT-116 group and HCT116+5-Aza-CdR group. CONCLUSION: 5-Aza-CdR can obviously inhibit the proliferation, migration and invasion of three colon cancer cell lines. Its mechanism maybe relies on the inhibition of DNMT1 mRNA level and protein level and the enhancement of RASSF1A mRNA level and protein level.

15.
Cell Reprogram ; 21(2): 89-98, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30785778

RESUMO

Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 µM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 µM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/farmacologia , Metilação de DNA , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , Animais , Búfalos , Adesão Celular , Proliferação de Células , Células Cultivadas , Feminino , Masculino , Células-Tronco Mesenquimais/citologia
16.
Biomed Pharmacother ; 109: 701-707, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551522

RESUMO

BACKGROUND: We have previously reported that 5-Aza-2-deoxycytidine (5-Aza-cdR) can repress protein serine/threonine phosphatase-1γ (PP1γ) expression and activity in the mouse hippocampus and affect the behaviour of mice in a water maze. It is well known that the phosphorylation of N-methyl-d-aspartate receptor 2B subunit (NR2B) plays a role in behaviour. In this study, we examined whether 5-Aza-cdR affects NR2B phosphorylation at tyrosine 1472 (p-Y1472 NR2B) and whether it affected the responses of the mice in a passive avoidance test. METHODS: 5-Aza-cdR (10 µM) was administered to mice via intracerebroventricular injection (i.c.v). The learning and memory behaviour of the mice were evaluated by measuring their response in a step-down type passive avoidance test 24 h after the injection. The mRNA level of NR2B was measured by real-time PCR. NR2B and p-Y1472 NR2B protein expression in the mouse hippocampus was detected by western blot and immunofluorescence. CDK5 activity was detected by the ADP-Glo™ + CDK5/p35 Kinase Enzyme System. To further clarify whether the 5-Aza-cdR effects on behaviour were dependent on cellular proliferation or not, the effect of 5-Aza-cdR on the expression level of NR2B, the phosphorylation level of p-Y1472 NR2B, cell viability and the cell cycle were analysed using the immortalized mouse hippocampal neuronal cells neural cell line HT22 treated with 10 µM 5-Aza-cdR compared with an untreated control group. RESULTS: After injection with 5-Aza-cdR, the behaviour of the mice in the step-down test was improved, while their phosphorylation level of p-Y1472 NR2B was increased and their CDK5 activity was decreased in the hippocampus. In vitro experiments showed 10 µM 5-Aza-cdR increased the p-Y1472 NR2B phosphorylation level with inhibition of cell viability and cell cycle arrest. CONCLUSIONS: Our results suggested that the effect of 5-Aza-cdR on behaviour may be related to the increase in phosphorylation of p-Y1472 NR2B in the hippocampus.


Assuntos
Aprendizagem da Esquiva/fisiologia , Decitabina/farmacologia , Hipocampo/metabolismo , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/genética , Tirosina/genética
17.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-751985

RESUMO

Objective To investigate the relationship between the expression of ASPP2 mRNA and the methylation of ASPP2 gene in gastric cancer cells,to observe the inhibitory effect of 5-Aza-CdR on the growth of gastric cancer cells,to observe the effect of demethylation on the expression of ASPP2 mRNA and the methylation of ASPP2 gene in gastric cancer cells,and to explore the molecular mechanism of gastric cancer.Methods Real-time PCR was used to detect the expression of ASPP2 mRNA in two gastric cancer cells and normal gastric epithelial cells.BSP was used to detect the methylation of ASPP2 gene in two gastric cancer cells and normal gastric epithelial cells.CCK-8 was used to detect the growth inhibition rate of gastric cancer cells treated with 5-Aza-CdR of different concentrations,then they were used to detect expression of ASPP2 mRNA and the methylation of ASPP2 gene in gastric cancer cells again after the demethylation.Results ① The expression of ASPP2 mRNA in MKN-45 cells was significantly lower than that in GES-1 cells(P<0.01).The expression of ASPP2 mRNA in MGC-803 cells was significantly lower than that in GES-1 cells (P<0.01).There was no significant difference in MGC-803 cells and MKN-45 cells(P>0.05).② The methylation rate of ASPP2 in MKN-45 cells was significantly higher than that in GES-1 cells (P<0.01).The methylation rate of ASPP2 in MGC-803 cells was not significantly different from that in GES-1 cells (P>0.05).The methylation rate of ASPP2 in MKN-45 cells was significantly higher than that in MGC-803 cells (P<0.01).③ At the same time,the growth inhibition rate of each 5-Aza-CdR concentration group increased as the drug concentration depended.4.The expression of ASPP2 mRNA in MKN-45 cells was significantly higher than that before treatment (P<0.01),the expression of ASPP2 mRNA in MGC-803 cells was not significantly different from that before treatment(P>0.05).The methylation rate of ASPP2 in MKN-45 cells was significantly lower than that before treatment (P<0.01).The methylation rate of ASPP2 in MGC-803 cells was not significantly different from that before treatment (P>0.05).Conclusion ① Abnormal hypermethylation of ASPP2 gene in MKN-45 cells may be a molecular mechanism of decreased ASPP2 mRNA expression.② 5-Aza-CdR can inhibit the growth of MKN-45 and MGC-803 cells,and it can enhance the expression of ASPP2 mRNA in MKN-45 cells.Reversal of methylation in the promoter region of ASPP2 gene is the possible mechanism.③ Abnormal hypermethylation of the promoter region of ASPP2 gene may lead to silencing of mRNA expression that may be associated with gastric cancer.

18.
Exp Cell Res ; 372(1): 43-51, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217493

RESUMO

Orosomucoid like-3 (ORMDL3) has been identified to be associated with the development of asthma according to previous studies. However, the definite role of ORMDL3 in the pathogenesis of asthma remains unclear. In this study, we found ORMDL3 was highly expressed in PBMC specimens from childhood asthma patients. Cytokines production and p-ERK/MMP-9 pathway expression was also increased in childhood asthma patients compared with controls. In addition, ORMDL3 overexpression induced IL-6 and IL-8 release and activated p-ERK/MMP-9 pathway in vitro. Increased ORMDL3 expression was observed after treated with 5-Aza-CdR. 5-Aza-CdR decreased the percentage of the CpG island in the ORMDL3 promoter region and increased its promoter activity. In addition, 5-Aza-CdR significantly increased IL-6 and IL-8 levels in NHBE cells while there was no obvious alteration after knocking down ORMDL3. Knockdown of ORMDL3 also significantly decreased the expression of p-ERK/MMP-9 pathway in the presence or absence of 5-Aza-CdR. In conclusion, our study provided novel evidence for the association between ORMDL3 and asthma-associated cytokines. Moreover, DNA methylation plays an important role in ORMDL3-mediated increased IL-6 and IL-8 levels and p-ERK/MMP-9 pathway expression.


Assuntos
Asma/genética , Epigênese Genética , Metaloproteinase 9 da Matriz/genética , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Adolescente , Asma/metabolismo , Asma/patologia , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Transformada , Criança , Ilhas de CpG , Decitabina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Metilação , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais
19.
Cancer Biomark ; 22(3): 435-442, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843210

RESUMO

BACKGROUND: Cervical cancer is one of the malignant tumors which seriously threaten the women health worldwide. SPINT2 is an endogenous inhibitor of hepatocyte growth factor activator and down regulated or even silenced in many human malignant tumors. OBJECTIVE: This study was performed to explore the promoter methylation status of SPINT2 gene and the effect on its expression in cervical carcinoma. METHODS: HPV-positive and -negative cervical cancer cell lines, 50 cases of cervical carcinoma tissues, and 20 cases of normal cervical tissues were used for this study. The methylation status of promoter and the first exon of SPINT2 gene were analyzed. The expression of SPINT2 was analyzed by qRT-PCR. RESULTS: HPV E6/E7 infection affects SPINT2 methylation rate in cell lines. SPINT2 methylation rate of HT-3E6/E7 was 8.8%, while the methylation rate of SPINT2 in HT-3 was 0%. In cervical tissues, the methylation rate of SPINT2 in cervical cancers was 54%, while the methylation rate of SPINT2 in normal cervical samples was 25%. As for cervical cancers, the methylation rate of SPINT2 gene was higher in grade 3 than those of grade 2. CONCLUSIONS: The expression of SPINT2 gene is regulated by its methylation status, and the methylation status of SPINT2 is altered by HPV infection. The aberrant methylation status of SPINT2 gene may play an important role in the development of cervical cancer.


Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/genética , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Linhagem Celular Tumoral , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
20.
J Dig Dis ; 19(7): 421-430, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29802754

RESUMO

OBJECTIVE: Our studies in vitro and in vivo aimed to investigate the influence of DNA methylation of peroxisome proliferator activated receptor-α (PPAR-α) gene in non-alcoholic fatty liver disease (NAFLD) pathogenesis and to observe whether the DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) and the herbal medicine curcumin might reverse the effect both in vivo and in vitro. METHODS: Steatotic hepatocyte model of cell lines and NAFLD rat models were established following protocols documented in previous studies. Subsequently, the models received 5-Aza-CdR and curcumin treatment. Morphological, histological and laboratory variables in each group were determined by routine methods, including PPAR-α mRNA expression by polymerase chain reaction (PCR), PPAR-α protein expression by Western blot and DNA methylation by pyrosequencing. RESULTS: The steatotic hepatocyte model and NAFLD rat model were completely established. The expressions of PPAR-α mRNA and protein were significantly lower in the steatotic hepatocyte and NAFLD rat model groups than in the controls (P < 0.05). The mean DNA methylation levels of the PPAR-α gene were significantly higher in the two steatotic model groups than in the controls, especially at several CpG sites (P < 0.05). 5-Aza-CdR and curcumin treatment significantly reversed the DNA methylation levels, increased PPAR-α mRNA and protein expression, and improved lipid accumulation in the two steatotic models (P < 0.05). CONCLUSIONS: DNA methylation at the PPAR-α gene is involved in the pathogenesis of NAFLD and is possibly reversible by 5-Aza-CdR and curcumin. Curcumin may be a promising candidate for NAFLD therapy.


Assuntos
Curcumina/farmacologia , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Inibidores Enzimáticos/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Hepatócitos , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...