Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38916640

RESUMO

RATIONALE: The phenylalkylamine hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) exhibits an inverted U-shaped dose-response curve for both head twitch response (HTR) and locomotor activity in mice. Accumulated studies suggest that HTR and locomotor hyperactivity induced by DOM are mainly caused by the activation of serotonin 5-hydroxytryptamine 2 A receptor (5-HT2A receptor). However, the mechanisms underlying the biphasic dose response of HTR and locomotor activity induced by DOM, particularly at high doses, remain unclear. OBJECTIVES: The primary objective of this study is to investigate the modulation of 5-HT2A/2C/1A receptors in HTR and locomotor activity, while also exploring the potential receptor mechanisms underlying the biphasic dose response of DOM. METHODS: In this study, we employed pharmacological methods to identify the specific 5-HT receptor subtypes responsible for mediating the biphasic dose-response effects of DOM on HTR and locomotor activity in C57BL/6J mice. RESULTS: The 5-HT2A receptor selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907) (500 µg/kg, i.p.) fully blocked the HTR at every dose of DOM (0.615-10 mg/kg, i.p.) in C57BL/6J mice. M100907 (50 µg/kg, i.p.) decreased the locomotor hyperactivity induced by a low dose of DOM (0.625, 1.25 mg/kg, i.p.), but had no effect on the locomotor hypoactivity induced by a high dose of DOM (10 mg/kg) in C57BL/6J mice. The 5-HT2C antagonist 6-chloro-5-methyl-1-[(2-[2-methylpyrid-3yloxy]pyrid-5yl)carbamoyl]indoline (SB242084) (0.3, 1 mg/kg, i.p.) reduced the HTR induced by a dose of 2.5 mg/kg DOM, but did not affect the response to other doses. SB242084 (1 mg/kg, i.p.) significantly increased the locomotor activity induced by DOM (0.615-10 mg/kg, i.p.) in mice. The 5-HT1A antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]N-(2-pyridinyl) cyclohexane carboxamide maleate (WAY100635) (1 mg/kg, i.p.) increased both HTR and locomotor activity induced by DOM in mice. The 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (1 mg/kg, i.p.) significantly reduced both the HTR and locomotor activity induced by DOM in mice. Additionally, pretreatment with the Gαi/o inhibitor PTX (0.25 µg/mouse, i.c.v.) enhanced the HTR induced by DOM and attenuated the effect of DOM on locomotor activity in mice. CONCLUSIONS: Receptor subtypes 5-HT2C and 5-HT1A are implicated in the inverted U-shaped dose-response curves of HTR and locomotor activity induced by DOM in mice. The biphasic dose-response function of HTR and locomotor activity induced by DOM has different mechanisms in mice.

2.
Neuroendocrinology ; : 1-26, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718758

RESUMO

INTRODUCTION: Since the discovery of gonadotropin-inhibitory hormone (GnIH), it has been found to play a critical role in reproduction in vertebrates. Recently, a regulatory role of GnIH in appetite and energy metabolism has emerged, although its precise physiological mechanisms remain unknown. METHODS: Thus, the present study evaluated the effects of a single or long-term intraperitoneal GnIH treatment on the food intake, weight, and glucolipid metabolism of chickens, as well as investigating the possible neuroendocrinology factors and mechanisms involved in GnIH-induced obesity and glucolipid metabolism disorder. RESULTS: Our results show that the intraperitoneal administration of GnIH to chickens resulted in a marked body mass increase, hyperlipidemia, hyperglycemia, and glucose intolerance. Subsequently, the results of metabolomics studies and the pharmacological inhibition of the 5-HT2C receptor revealed that blocking the 5-HT2C receptor reinforced the effects of GnIH on food intake, body weight, and blood glucose and lipid levels, resulting in even worse cases of GnIH-induced hyperglycemia, hyperlipidemia, and hepatic lipid deposition. This suggests that, via the 5-HT2C receptor, peripheral 5-HT may act as a negative feedback regulator to interplay with GnIH and jointly control energy balance homeostasis in chickens. DISCUSSION: Our present study provides evidence of cross-talk between GnIH and 5-HT in food intake and energy metabolism at the in vivo pharmacological level, and it proposes a molecular basis for these interactions, suggesting that functional interactions between GnIH and 5-HT may open new avenues for understanding the mechanism of the neuroendocrine network involved in appetite and energy metabolism, as well as providing a new therapeutic strategy to prevent obesity, diabetes, and metabolic disorders.

3.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701344

RESUMO

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

4.
Pharmacol Rep ; 75(6): 1502-1521, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923824

RESUMO

BACKGROUND: Serotonin (5-HT) 5-HT2C receptor mRNA editing (at five sites, A-E), implicated in neuropsychiatric disorders, including clinical depression, remains unexplored during alcohol abstinence-often accompanied by depressive symptoms. METHODS: We used deep sequencing to investigate 5-HT2C receptor editing in mice during early ethanol deprivation following prolonged alcohol exposure and mice lacking tryptophan hydroxylase (TPH)2, a key enzyme in central 5-HT production. We also examined Tph2 expression in ethanol-deprived animals using quantitative real-time PCR (qPCR). RESULTS: Cessation from chronic 10% ethanol exposure in a two-bottle choice paradigm enhanced immobility time and decreased latency in the forced swim test (FST), indicating a depression-like phenotype. In the hippocampus, ethanol-deprived "high ethanol-drinking" mice displayed reduced Tph2 expression, elevated 5-HT2C receptor editing efficiency, and decreased frequency of the D mRNA variant, encoding the less-edited INV protein isoform. Tph2-/- mice showed attenuated receptor editing in the hippocampus and elevated frequency of non-edited None and D variants. In the prefrontal cortex, Tph2 deficiency increased receptor mRNA editing at site D and reduced the frequency of AB transcript, predicting a reduction in the corresponding partially edited VNI isoform. CONCLUSIONS: Our findings reveal differential effects of 5-HT depletion and ethanol cessation on 5-HT2C receptor editing. Central 5-HT depletion attenuated editing in the prefrontal cortex and the hippocampus, whereas ethanol deprivation, coinciding with reduced Tph2 expression in the hippocampus, enhanced receptor editing efficiency specifically in this brain region. This study highlights the interplay between 5-HT synthesis, ethanol cessation, and 5-HT2C receptor editing, providing potential mechanism underlying increased ethanol consumption and deprivation.


Assuntos
Receptor 5-HT2C de Serotonina , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Etanol , Encéfalo/metabolismo , RNA Mensageiro/genética
5.
Br J Pharmacol ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679998

RESUMO

Substance use disorder (SUD) is a chronic condition, with maintained abuse of a substance leading to physiological and psychological alterations and often changes in cognitive and social behaviours. Current therapies include psychotherapy coupled with medication; however, high relapse rates reveal the shortcomings of these therapies. The signalling, expression profile, and neurological function of the serotonin 2C receptor (5-HT2C receptor) make it a candidate of interest for the treatment of SUD. Recently, psychedelics, which broadly act at 5-HT2 receptors, have indicated potential for the treatment of SUD, implicating the 5-HT2C receptor. The modern psychedelic movement has rekindled interest in the 5-HT2C receptor, resulting in many new studies, especially structural analyses. This review explores the structural, molecular and cellular mechanisms governing 5-HT2C receptor function in the context of SUD. This provides the basis of the preclinical and clinical evidence for their role in SUD and highlights the potential for future exploration.

6.
Behav Brain Res ; 447: 114438, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059187

RESUMO

Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5 mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5 mg/kg, whereas operant responding was reduced at 1 mg/kg. At a much lower dose range lorcaserin 0.05-0.2 mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by the fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.


Assuntos
Receptor 5-HT2C de Serotonina , Serotonina , Animais , Masculino , Camundongos , Comportamento Impulsivo , Camundongos Endogâmicos C57BL , Recompensa , Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia
7.
Brain Res Bull ; 198: 3-14, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076049

RESUMO

Depression is a leading cause of disability worldwide and the psychiatric diagnosis most commonly associated with suicide. 4-Butyl-alpha-agarofuran (AF-5), a derivative of agarwood furan, is currently in phase III clinical trials for generalized anxiety disorder. Herein, we explored the antidepressant effect and its possible neurobiological mechanisms in animal models. In present study, AF-5 administration markedly decreased the immobility time in mouse forced swim test and tail suspension test. In the sub-chronic reserpine-induced depressive rats, AF-5 treatment markedly increased the rectal temperature and decreased the immobility time of model rats. In addition, chronic AF-5 treatment markedly reversed the depressive-like behaviors in chronic unpredictable mild stress (CUMS) rats by reducing immobility time of forced swim test. Single treatment with AF-5 also potentiated the mouse head-twitch response induced by 5-hydroxytryptophan (5-HTP, a metabolic precursor to serotonin), and antagonized the ptosis and motor ability triggered by reserpine. However, AF-5 had no effect on yohimbine toxicity in mice. These results indicated that acute treatment with AF-5 produced serotonergic, but not noradrenergic activation. Furthermore, AF-5 reduced adrenocorticotropic hormone (ACTH) level in serum and normalized the neurotransmitter changes, including the decreased serotonin (5-HT) in hippocampus of CUMS rats. Moreover, AF-5 affected the expressions of CRFR1 and 5-HT2C receptor in CUMS rats. These findings confirm the antidepressant effect of AF-5 in animal models, which may be primarily related to CRFR1 and 5-HT2C receptor. AF-5 appears to be promising as a novel dual target drug for depression treatment.


Assuntos
Depressão , Serotonina , Ratos , Camundongos , Animais , Serotonina/metabolismo , Depressão/psicologia , Reserpina/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Antidepressivos/uso terapêutico , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
8.
Nutrients ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986191

RESUMO

Obesity is a substantial health and economic issue, and serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter system involved in the regulation of body weight. The 5-HT2C receptors (5-HT2CRs), one of 16 of the 5-HT receptor (5-HTRs) subtypes, play a significant role in food intake and body weight control. In this review, we focused on the 5-HTR agonists, such as fenfluramines, sibutramine, and lorcaserin, which act directly or indirectly at 5-HT2CRs and have been introduced into the clinic as antiobesity medications. Due to their unwanted effects, they were withdrawn from the market. The 5-HT2CR positive allosteric modulators (PAMs) can be potentially safer active drugs than 5-HT2CR agonists. However, more in vivo validation of PAMs is required to fully determine if these drugs will be effective in obesity prevention and antiobesity pharmacology treatment. Methodology strategy: This review focuses on the role of 5-HT2CR agonism in obesity treatment, such as food intake regulation and weight gain. The literature was reviewed according to the review topic. We searched the PubMed and Scopus databases and Multidisciplinary Digital Publishing Institute open-access scientific journals using the following keyword search strategy depending on the chapter phrases: (1) "5-HT2C receptor" AND "food intake", and (2) "5-HT2C receptor" AND "obesity" AND "respective agonists", and (3) "5-HT2C receptor" AND "PAM". We included preclinical studies (only present the weight loss effects) and double-blind, placebo-controlled, randomized clinical trials published since the 1975s (mostly related to antiobesity treatment), and excluded the pay-walled articles. After the search process, the authors selected, carefully screened, and reviewed appropriate papers. In total, 136 articles were included in this review.


Assuntos
Fármacos Antiobesidade , Serotonina , Humanos , Serotonina/farmacologia , Obesidade/tratamento farmacológico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Regulação do Apetite , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Pharmacol Rep ; 75(1): 99-118, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36374478

RESUMO

BACKGROUND: Epidemiological data indicate a high rate of comorbidity of depression and cocaine use disorder (CUD). The role of serotonin 2C (5-HT2C) receptors in the mechanisms responsible for the coexistence of depression and CUD was not investigated. METHODS: We combined bilateral olfactory bulbectomy (OBX), an animal model of depression, with intravenous cocaine self-administration and extinction/reinstatement in male rats to investigate two 5-HT2C receptor agonists (Ro 60-0175 (RO) and WAY 161503 (WAY)) and the 5-HT2C-receptor preferring antagonist mirtazapine (MIR; an antidepressant), with the goal of determining whether these drugs alter cocaine-induced reinforcement and seeking behaviors. Additionally, neurochemical analyses were performed following cocaine self-administration and its abstinence period in the brain structures in OBX rats and SHAM-operated controls. RESULTS: Acute administration of RO reduced, while WAY non-significantly attenuated cocaine reinforcement in both rat phenotypes. Moreover, RO or WAY protected against cocaine-seeking behavior after acute or after repeated drug administration during extinction training in OBX and SHAM rats. By contrast, acutely administered MIR did not alter cocaine reinforcement in both rat phenotypes, while it's acute (but not repeated) pretreatment reduced cocaine-seeking in OBX and SHAM rats. In neurochemical analyses, cocaine reinforcement increased 5-HT2C receptor levels in the ventral hippocampus; a preexisting depression-like phenotype enhanced this effect. The 10-daily cocaine abstinence reduced 5-HT2C receptor expression in the dorsolateral striatum, while the coexistence of depression and CUD enhanced local receptor expression. CONCLUSION: The results support a key role of 5-HT2C receptors for treating CUD and comorbid depression and CUD. They may be backs the further research of pharmacological strategies with drug targeting receptors.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Ratos , Masculino , Animais , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Serotonina/farmacologia , Preparações Farmacêuticas , Receptor 5-HT2C de Serotonina , Depressão/tratamento farmacológico , Extinção Psicológica , Comorbidade , Autoadministração
10.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235029

RESUMO

A new series of 5-norbornene-2-carboxamide derivatives was prepared and their affinities to the 5-HT1A, 5-HT2A, and 5-HT2C receptors were evaluated and compared to a previously synthesized series of derivatives characterized by exo-N-hydroxy-5-norbornene-2,3-dicarboximidenucleus, in order to identify selective ligands for the above-mentioned subtype receptors. Arylpiperazines represents one of the most important classes of 5-HT1AR ligands, and recent research concerning new derivatives has been focused on the modification of one or more portions of such pharmacophore. The combination of structural elements (heterocyclic nucleus, propyl chain and 4-substituted piperazine), known to be critical to the affinity to 5-HT1A receptors, and the proper selection of substituents led to compounds with high specificity and affinity towards serotoninergic receptors. The most active compounds were selected for further in vivo assays to determine their functional activity. Finally, to rationalize the obtained results, molecular docking studies were performed. The results of the pharmacological studies showed that Norbo-4 and Norbo-18 were the most active and promising derivatives for the serotonin receptor considered in this study.


Assuntos
Receptores de Serotonina , Serotonina , Ligantes , Simulação de Acoplamento Molecular , Norbornanos/farmacologia , Piperazina , Receptor 5-HT1A de Serotonina , Relação Estrutura-Atividade
11.
Ther Adv Psychopharmacol ; 12: 20451253221105128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795687

RESUMO

Generalized anxiety disorder (GAD), the most frequently diagnosed form of anxiety, is usually treated by cognitive-behavioural approaches or medication; in particular, benzodiazepines (acutely) and serotonin or serotonin/noradrenaline reuptake inhibitors (long term). Efficacy, compliance, and acceptability are, however, far from ideal, reinforcing interest in alternative options. Agomelatine, clinically employed in the treatment of major depression, expresses anxiolytic properties in rodents and was effective in the treatment of GAD (including severely ill patients) in several double-blind, short-term (12 weeks) and relapse-prevention (6 months) studies. At active doses, the incidence of adverse effects was no higher than for placebo. Agomelatine possesses a unique binding profile, behaving as a melatonin (MT1/MT2) receptor agonist and 5-HT2C receptor antagonist, yet recognizing neither monoamine transporters nor GABAA receptors. Extensive evidence supports a role for 5-HT2C receptors in the induction of anxious states, and their blockade likely plays a primary role in mediating the anxiolytic actions of agomelatine, including populations in the amygdala and bed nucleus of stria terminalis, as well as the hippocampus. Recruitment of MT receptors in the suprachiasmatic nucleus, thalamic reticular nucleus, and hippocampus appears to fulfil a complimentary role. Downstream of 5-HT2C and MT receptors, modulation of stress-sensitive glutamatergic circuits and altered release of the anxiogenic neuropeptides, corticotrophin-releasing factor, and vasopressin, may be implicated in the actions of agomelatine. To summarize, agomelatine exerts its anxiolytic actions by mechanisms clearly distinct from those of other agents currently employed for the management of GAD. Plain Language Summary: How agomelatine helps in the treatment of anxiety disorders. Introduction: • Anxiety disorders have a significant negative impact on quality of life.• The most common type of anxiety disorder, called generalized anxiety disorder (GAD), is associated with nervousness and excessive worry.• These symptoms can lead to additional symptoms like tiredness, sleeplessness, irritability, and poor attention.• GAD is generally treated through either cognitive-behavioural therapy or medication. However, widely used drugs like benzodiazepines and serotonin reuptake inhibitors have adverse effects.• Agomelatine, a well-established antidepressant drug, has shown anxiety-lowering ('anxiolytic') properties in rats and has been shown to effectively treat GAD with minimal side effects.• However, exactly how it acts on the brain to manage GAD is not yet clear.• Thus, this review aims to shed light on agomelatine's mechanism of action in treating GAD. Methods: • The authors reviewed studies on how agomelatine treats anxiety in animals.• They also looked at clinical studies on the effects of agomelatine in people with GAD. Results: • The study showed that agomelatine 'blocks' a receptor in nerve cells, which plays a role in causing anxiety, called the 5-HT2C receptor.• Blocking this receptor, especially in specific brain regions such as nerve cells of the amygdala, bed nucleus of stria terminalis, and hippocampus, produced the anxiety reduction seen during agomelatine treatment.• Agomelatine also activates the melatonin (MT) receptor, which is known to keep anxiety in check, promote sleep, and maintain the sleep cycle.• Agomelatine should thus tackle sleep disturbances commonly seen in patients with GAD.• Beyond 5-HT2C and MT receptors, signalling molecules in nerve cells that are known to be involved in anxiety disorders (called 'neurotransmitters' and 'neuropeptides') are also affected by agomelatine. Conclusion: • Agomelatine's anxiolytic effects are caused by mechanisms that are distinct from those of other medications currently used to treat GAD.• This explains its therapeutic success and minimal adverse side effects.

12.
Clocks Sleep ; 4(2): 277-286, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35735604

RESUMO

Many plants have been used in Korean medicine for treating insomnia. However, scientific evidence for their sedative activity has not been fully investigated. Thus, this study was carried out to investigate the sedative effects of the extracts of medicinal plants, including Yukmijihwang-tang and its various modified forms through the 5-HT2c receptor binding assay, and to further confirm its sleep-promoting effects and the underlying neural mechanism in rats utilizing electroencephalography (EEG) analysis. Enzyme-linked immunosorbent assay (ELISA) was used to measure serotonin (5-HT) in the brain. The water extracts of modified Yukmijihwang-tang (YmP) displayed binding affinity to the 5-HT2C receptor (IC50 value of 199.9 µg/mL). YmP (50 mg/kg) administration decreased wake time and increased REM and NREM sleep based on EEG data in rats. Additionally, treatment with YmP significantly increased the 5-HT level in the hypothalamus. In conclusion, the sedative effect of YmP can be attributed to the activation of the central serotonergic systems, as evidenced by the high affinity of binding of the 5-HT2C receptor and increased 5-HT levels in the brain of the rat. This study suggests that YmP can be a new material as a sleep inducer in natural products.

13.
J Neuroinflammation ; 19(1): 117, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610704

RESUMO

BACKGROUND: Agomelatine has been shown to be effective in the treatment of depression, but the molecular mechanisms underlying its antidepressant effects have yet to be elucidated. Identification of these molecular mechanisms would not only offer new insights into the basis for depression but also provide the foundation for the development of novel treatments for this disorder. METHODS: Intraperitoneal injection of LPS was used to induce depression-like behaviors in rats. The interactions of the 5-HT2C reporter and Gαi-2 were verified by immunoprecipitation or immunofluorescence assay. Inflammatory related proteins, autophagy related proteins and apoptosis markers were verified by immunoblotting or immunofluorescence assay. Finally, electron microscopy analysis was used to observe the synapse and ultrastructural pathology. RESULTS: Here, we found that the capacity for agomelatine to ameliorate depression and anxiety in a lipopolysaccharide (LPS)-induced rat model of depression was associated with an alleviation of neuroinflammation, abnormal autophagy and neuronal apoptosis as well as the promotion of neurogenesis in the hippocampal dentate gyrus (DG) region of these rats. We also found that the 5-HT2C receptor is coupled with G alphai (2) (Gαi-2) protein within hippocampal neurons and, agomelatine, acting as a 5-HT2C receptor antagonist, can up-regulate activity of the Gαi-2-cAMP-PKA pathway. Such events then suppress activation of the apoptosis signal-regulating kinase 1 (ASK1) pathway, a member of the mitogen-activated protein kinase (MAPK) family involved in pathological processes of many diseases. CONCLUSION: Taken together, these results suggest that agomelatine plays a neuroprotective role in regulating neuroinflammation, autophagy disorder and apoptosis in this LPS-induced rat model of depression, effects which are associated with the display of antidepressant behaviors. These findings provide evidence for some of the potential mechanisms for the antidepressant effects of agomelatine.


Assuntos
Acetamidas , Naftalenos , Receptor 5-HT2C de Serotonina , Acetamidas/farmacologia , Animais , Antidepressivos/farmacologia , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Depressão/patologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinase 5/metabolismo , Naftalenos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Receptor 5-HT2C de Serotonina/metabolismo , Transdução de Sinais
14.
Bioorg Chem ; 123: 105795, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430417

RESUMO

The concept of subtype selectivity and functional bias has recently reshaped current GPCR drug discovery for G protein-coupled receptors. A series of new N-H aporphines with A-ring modifications have been synthesized, and their efficacy on 5-HT2 receptor activation was evaluated. SAR analysis led to the discovery of several more potent and selective 5-HT2C receptor agonists (e.g., 11b and 11f) with low nanomolar activity. Molecular docking analysis of this series of aporphines was in accordance with our SAR results. The functional selectivity of specific compounds was tested via both Gq-mediated calcium flux and ß-arrestin recruitment assays, which revealed that these compounds exhibited no ß-arrestin recruitment activity. Further ADMET study combined with behavioral assessment using a methamphetamine-induced hyperactivity model identified compound 11b and 11f possessing promising drug-like profiles and having antipsychotic potential. These agonists with an exclusive bias toward Gq signaling may serve as valuable pharmacological probes to facilitate the elucidation of therapeutically relevant 5-HT2C signaling pathways and the development of alternative antipsychotic medications.


Assuntos
Antipsicóticos , Aporfinas , Antipsicóticos/química , Antipsicóticos/farmacologia , Aporfinas/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT2C de Serotonina , Serotonina
15.
Clocks Sleep ; 4(1): 145-159, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35323168

RESUMO

Many medicinal plants have been used in Asia for treating a variety of mental diseases, including insomnia and depression. However, their sedative-hypnotic effects and mechanisms have not been clarified yet. Accordingly, the objective of this study was to investigate the sedative-hypnotic effects of water extracts of five medicinal plants: Coptidis Rhizoma, Lycii Fructus, Angelicae sinensis Radix, Bupleuri Radix, and Polygonum multiflorum Thunberg. The binding abilities of five medicinal plant extracts to the GABAA-BZD and 5-HT2C receptors were compared. Their abilities to activate arylalkylamine N-acetyltransferase (AANAT), a melatonin synthesis enzyme, in pineal cells were also determined. Following in vitro tests, the sedative and hypnotic activities of extracts with the highest activities were determined in an animal sleep model. In the binding assay, the water extracts of Coptidis Rhizoma (WCR) showed high binding affinity to the GABAA-BZD and 5-HT2C receptors in a dose-dependent manner. Additionally, WCR increased the AANAT activity up to five times compared with the baseline level. Further animal sleep model experiments showed that WCR potentiated pentobarbital-induced sleep by prolonging the sleep time. It also decreased the sleep onset time in mice. In addition, WCR reduced wake time and increased non-rapid eye movement (NREM) sleep without EEG power density (percentages of δ, θ, and α waves) during NREM sleep in rats. WCR could effectively induce NREM sleep without altering the architectural physiologic profile of sleep. This is the first report of the sedative-hypnotic effect of Coptidis Rhizoma possibly by regulating GABAA and 5-HT2C receptors and by activating AANAT activity.

16.
Psychopharmacology (Berl) ; 239(1): 123-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34762147

RESUMO

The serotonin (5-HT) system, particularly the 5-HT2C receptor, has consistently been implicated in behavioural control. However, while some studies have focused on the role 5-HT2C receptors play in regulating motivation to work for reward, others have highlighted its importance in response restraint. To date, it is unclear how 5-HT transmission at this receptor regulates the balance of response invigoration and restraint in anticipation of future reward. In addition, it remains to be established how 5-HT2C receptors gate the influence of internal versus cue-driven processes over reward-guided actions. To elucidate these issues, we investigated the effects of administering the 5-HT2C receptor antagonist SB242084, both systemically and directly into the nucleus accumbens core (NAcC), in rats performing a Go/No-Go task for small or large rewards. The results were compared to the administration of d-amphetamine into the NAcC, which has previously been shown to promote behavioural activation. Systemic perturbation of 5-HT2C receptors-but crucially not intra-NAcC infusions-consistently boosted rats' performance and instrumental vigour on Go trials when they were required to act. Concomitantly, systemic administration also reduced their ability to withhold responding for rewards on No-Go trials, particularly late in the holding period. Notably, these effects were often apparent only when the reward on offer was small. By contrast, inducing a hyperdopaminergic state in the NAcC with d-amphetamine strongly impaired response restraint on No-Go trials both early and late in the holding period, as well as speeding action initiation. Together, these findings suggest that 5-HT2C receptor transmission, outside the NAcC, shapes the vigour of ongoing goal-directed action as well as the likelihood of responding as a function of expected reward.


Assuntos
Receptor 5-HT2C de Serotonina , Serotonina , Animais , Motivação , Núcleo Accumbens , Ratos , Recompensa
17.
Neuropharmacology ; 206: 108926, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921828

RESUMO

Perseveration is a characteristic of patients with obsessive-compulsive disorder (OCD). Clinically, neuronal activity in the lateral orbitofrontal cortex (OFC) is increased in OCD patients. Successful treatment with selective serotonin reuptake inhibitors (SSRIs) reduces activity in the lateral OFC of OCD patients, but the precise mechanisms underlying this effect are unclear. Previously, we reported that repeated injection of the dopamine D2 receptor agonist quinpirole (QNP) resulted in OCD-like deficits, including perseveration in a reversal learning task. QNP-treated mice showed hyperactivity in lateral OFC pyramidal neurons. The present study demonstrated that 4-week administration of an SSRI increased the rate of correct choice in a reversal learning task. Using the electrophysiological approach, we revealed that an SSRI decreased the activity of lateral OFC pyramidal neurons in QNP-treated mice by potentiating inhibitory inputs. The 4-week administration of an SSRI inhibited the potentiation of neuronal activity induced by a 5-HT2C receptor agonist. Additionally, both 4-week administration of SSRI and acute application of 5-HT2C receptor antagonist prevented the QNP-induced potentiation of inhibitory inputs to fast-spiking interneurons in the lateral OFC. Administration of a 5-HT2C receptor antagonist to mice for 4 days increased the rate of correct choice in a reversal learning task. Collectively, these results indicate that chronic SSRI ameliorated perseverative behavior in QNP-treated mice by modulating inhibitory inputs in the lateral OFC. Short-term 5-HT2C receptor blockade also ameliorated QNP-induced behavioral and neurological abnormalities by, at least in part, a common mechanism with chronic SSRI.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Obsessivo-Compulsivo/tratamento farmacológico , Córtex Pré-Frontal/efeitos dos fármacos , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Modelos Animais de Doenças , Interneurônios/efeitos dos fármacos , Camundongos , Células Piramidais/efeitos dos fármacos , Reversão de Aprendizagem/efeitos dos fármacos , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
18.
Front Neurosci ; 15: 766320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899169

RESUMO

The serotonin 5-HT2 C receptor (5-HT2 C R) is abundantly expressed throughout the central nervous system, and involved in a variety of neuroendocrine and neurobehavioral processes. The development of a selective radioligand that will enable in vivo imaging and quantification of 5-HT2 C R densities represents a significant technological advancement in understanding both the normal function and pathophysiology of the 5-HT2 C R. Four 7-halogen-2-phenyl isoindolones (7-F, Cl, Br, I) were synthesized and displayed high affinities for 5-HT2 C R and high selectivity over 5-HT2 A and 5-HT2 B . [11C]7-Chloro-2-[4-methoxy-3-[2-(4-methylpiperidin-1-yl)ethoxy]phenyl]isoindolin-1-one (6) and [11C]7-iodo-2-[4-methoxy-3-[2-(4-methylpiperidin-1-yl)ethoxy]phenyl]isoindolin-1-one (9) were synthesized in high radiochemical yield of 37-44% [n = 10, decay corrected from end of (11C)CH3I synthesis] with high radiochemical purity via O-methylation with [11C]CH3I, respectively. MicroPET imaging studies in male rats with or without 5-HT2 C antagonist SB-242084 showed that [11C]6 and [11C]9 display specific bindings to 5-HT2 C R in the choroid plexus and hippocampus. In vivo microPET brain imaging studies in rhesus monkeys demonstrated that [11C]6 and [11C]9 exhibit excellent blood-brain barrier penetration. The contrast of bindings to the choroid plexus and hippocampus compared to the cerebellum peaked at 2.7 and 1.6, respectively, for [11C]6, and 3.7 and 2.7, respectively, for [11C]9, which were reduced by administration of a dose of SB-242084. Our results support the candidacy of [11C]6 and [11C]9 for further study as radioligands for in vivo quantitation of 5-HT2 C sites by PET.

19.
Bioorg Chem ; 116: 105380, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34670330

RESUMO

A series of indole based novel Schiff bases was designed as potential agonists of 5-HT2C receptor that was supported by docking studies in silico. These compounds were synthesized via Amberlyst-15 catalysed condensation of an appropriate pyrazole based primary amine with the corresponding indole-3-aldehyde under ultrasound irradiation at ambient temperature. A number of target Schiff bases were obtained in good yields (77-87%) under mild conditions within 1 h. Notably, the methodology afforded the corresponding pyrazolo[4,3-d]pyrimidin-7(4H)-one derivatives when the primary amine was replaced by a secondary amine. Several Schiff bases showed agonist activity when tested against human 5-HT2C using luciferase assay in HEK293T cells in vitro. The SAR (Structure-Activity-Relationship) studies suggested that the imine moiety was more favorable over its cyclic form i.e. the corresponding pyrazolopyrimidinone ring. The Schiff bases 3b (EC50 1.8 nM) and 3i (EC50 5.7 nM) were identified as the most active compounds and were comparable with Lorcaserin (EC50 8.5 nM). Also like Lorcaserin, none of these compounds were found to be PAM of 5-HT2C. With ∼24 and ∼150 fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B respectively the compound 3i that reduced locomotor activity in zebrafish (Danio rerio) larvae model emerged as a promising hit molecule for further study.


Assuntos
Indóis/farmacologia , Receptor 5-HT2C de Serotonina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Estirenos/química , Ondas Ultrassônicas , Catálise , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Relação Estrutura-Atividade
20.
Adv Ther ; 38(Suppl 2): 52-60, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34417992

RESUMO

Recent network meta-analyses support the use of pharmacotherapy in patients with generalised anxiety disorder (GAD). Compared with placebo, drug treatment can improve symptoms and quality of life, and is more effective in preventing relapse. Selective serotonin reuptake inhibitors and serotonin-norepinephrine reuptake inhibitors are generally considered the first-line agents of choice in GAD, but in some patients, an alternative evidence-based treatment with a different mechanism of action may also be considered (e.g. those with severe GAD, inadequate response, adverse effects and/or contraindications). One example is agomelatine, a melatonin receptor agonist and serotonin 2C (5-HT2C) receptor antagonist, which has been shown to have efficacy that is greater than placebo in patients with GAD, and to have a tolerability profile that compares favourably with that of escitalopram. Both agomelatine and escitalopram are efficacious in treating patients with GAD, including those with severe symptoms. Video Abstract.


Assuntos
Acetamidas , Qualidade de Vida , Acetamidas/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Humanos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...