Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Sci Rep ; 14(1): 15093, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956179

RESUMO

2K4L is a rationally designed analog of the short α-helical peptide temporin-1CEc, a natural peptide isolated and purified from the skin secretions of the Chinese brown frog Rana chensinensis by substituting amino acid residues. 2K4L displayed improved and broad-spectrum antibacterial activity than temporin-1CEc in vitro. Here, the antibacterial and anti-inflammatory activities of 2K4L in macrophages, C. elegans and mice were investigated. The results demonstrated that 2K4L could enter THP-1 cells to kill a multidrug-resistant Acinetobacter baumannii strain (MRAB 0227) and a sensitive A. baumannii strain (AB 22933), as well as reduce proinflammatory responses induced by MRAB 0227 by inhibiting NF-κB signaling pathway. Similarly, 2K4L exhibited strong bactericidal activity against A. baumannii uptake into C. elegans, extending the lifespan and healthspan of the nematodes. Meanwhile, 2K4L alleviated the oxidative stress response by inhibiting the expression of core genes in the p38 MAPK/PMK-1 signaling pathway and downregulating the phosphorylation level of p38, thereby protecting the nematodes from damage by A. baumannii. Finally, in an LPS-induced septic model, 2K4L enhanced the survival of septic mice and decreased the production of proinflammatory cytokines by inhibiting the signaling protein expression of the MAPK and NF-κB signaling pathways and protecting LPS-induced septic mice from a lethal inflammatory response. In conclusion, 2K4L ameliorated LPS-induced inflammation both in vitro and in vivo.


Assuntos
Acinetobacter baumannii , Caenorhabditis elegans , Lipopolissacarídeos , Macrófagos , Choque Séptico , Animais , Caenorhabditis elegans/efeitos dos fármacos , Camundongos , Acinetobacter baumannii/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Choque Séptico/tratamento farmacológico , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , NF-kappa B/metabolismo , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Caenorhabditis elegans
2.
Front Microbiol ; 15: 1394775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38946905

RESUMO

Introduction: Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen causing nosocomial infection in the clinic. The occurrence rate of antibiotic resistance is increasing year by year, resulting in a highly serious situation of bacterial resistance. Methods: To better understand the local epidemiology of multidrug-resistant A. baumannii, an investigation was conducted on the antibiotic resistance of different types of A. baumannii and its relationship with the genes of A. baumannii. Furthermore, the molecular mechanism underlying antibiotic resistance in A. baumannii was investigated through transcriptome analysis. Results: These results showed that a total of 9 STs were detected. It was found that 99% of the strains isolated in the hospital belonged to the same STs, and the clone complex CC208 was widely distributed in various departments and all kinds of samples. Furthermore, these A. baumannii strains showed high resistance to ertapenem, biapenem, meropenem, and imipenem, among which the resistance to ertapenem was the strongest. The detection rate of bla OXA-51 gene in these carbapenem resistance A. baumannii (CRAB) reached 100%; Additionally, the transcriptome results showed that the resistance genes were up-regulated in resistance strains, and these genes involved in biofilm formation, efflux pumps, peptidoglycan biosynthesis, and chaperonin synthesis. Discussion: These results suggest that the CC208 STs were the main clonal complex, and showed high carbapenem antibiotic resistance. All these resistant strains were distributed in various departments, but most of them were distributed in intensive care units (ICU). The bla OXA-23 was the main antibiotic resistance genotype; In summary, the epidemic trend of clinical A. baumannii in Guiyang, China was analyzed from the molecular level, and the resistance mechanism of A. baumannii to carbapenem antibiotics was analyzed with transcriptome, which provided a theoretical basis for better control of A. baumannii.

3.
Arch Pharm (Weinheim) ; : e2400440, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986447

RESUMO

Acinetobacter baumannii with the capability to "escape" almost all currently available antibacterials is eroding the safety of basic medical interventions and is an increasing cause of mortality globally, prompting a substantial requirement for new classes of antibacterial agents. Indoles participate in the regulation of persistent bacterial formation, biofilm formation, plasmid stability, and drug resistance. In particular, indole hybrids demonstrated promising antibacterial activity against both drug-sensitive and drug-resistant A. baumannii pathogens, representing a fertile source for the discovery of novel therapeutic agents for clinical deployment in controlling A. baumannii infections. This mini-review outlines the current innovations of indole hybrids with antibacterial activity against A. baumannii pathogens, covering articles published from 2020 to the present, to open new avenues for exploring novel anti-A. baumannii candidates.

4.
J Neuroimmune Pharmacol ; 19(1): 32, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38886254

RESUMO

With the increasing resistance of Acinetobacter baumannii (A. baumannii) to antibiotics, researchers have turned their attention to the development of new antimicrobial agents. Among them, coumarin-based heterocycles have attracted much attention due to their unique biological activities, especially in the field of antibacterial infection. In this study, a series of coumarin derivatives were synthesized and screened for their bactericidal activities (Ren et al. 2018; Salehian et al. 2021). The inhibitory activities of these compounds on bacterial strains were evaluated, and the related mechanism of the new compounds was explored. Firstly, the MIC values and bacterial growth curves were measured after compound treatment to evaluate the antibacterial activity in vitro. Then, the in vivo antibacterial activities of the new compounds were assessed on A. baumannii-infected mice by determining the mice survival rates, counting bacterial CFU numbers, measuring inflammatory cytokine levels, and histopathology analysis. In addition, the ROS levels in the bacterial cells were measured with DCFH-DA detection kit. Furthermore, the potential target and detailed mechanism of the new compounds during infection disease therapy were predicted and evidenced with molecular docking. After that, ADMET characteristic prediction was completed, and novel, synthesizable, drug-effective molecules were optimized with reinforcement learning study based on the probed compound as a training template. The interaction between the selected structures and target proteins was further evidenced with molecular docking. This series of innovative studies provides important theoretical and experimental data for the development of new anti-A. baumannii infection drugs.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Cumarínicos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Animais , Acinetobacter baumannii/efeitos dos fármacos , Cumarínicos/farmacologia , Cumarínicos/química , Cumarínicos/uso terapêutico , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antibacterianos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Ensaios de Triagem em Larga Escala/métodos , Simulação de Acoplamento Molecular , Masculino , Camundongos Endogâmicos BALB C , Feminino
5.
Front Pharmacol ; 15: 1385261, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831886

RESUMO

Antibiotic-resistant bacteria are rapidly emerging, and the increasing prevalence of multidrug-resistant (MDR) Acinetobacter baumannii poses a severe threat to humans and healthcare organizations, due to the lack of innovative antibacterial drugs. Endolysins, which are peptidoglycan hydrolases encoded by a bacteriophage, are a promising new family of antimicrobials. Endolysins have been demonstrated as an effective therapeutic agent against bacterial infections of A. baumannii and many other Gram-positive and Gram-negative bacteria. Endolysin research has progressed from basic in vitro characterization to sophisticated protein engineering methodologies, including advanced preclinical and clinical testing. Endolysin are therapeutic agent that shows antimicrobial properties against bacterial infections caused by drug-resistant Gram-negative bacteria, there are still barriers to their implementation in clinical settings, such as safety concerns with outer membrane permeabilizers (OMP) use, low efficiency against stationary phase bacteria, and stability issues. The application of protein engineering and formulation techniques to improve enzyme stability, as well as combination therapy with other types of antibacterial drugs to optimize their medicinal value, have been reviewed as well. In this review, we summarize the clinical development of endolysin and its challenges and approaches for bringing endolysin therapies to the clinic. This review also discusses the different applications of endolysins.

6.
Int J Antimicrob Agents ; : 107258, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914142

RESUMO

Tandem amplification of carbapenemase genes increases gene copy number and enhances carbapenem resistance. These amplifications are often heterogeneous, transient, and located on plasmids, which also contribute to heteroresistance. Amplification of encoding genes is especially important for enzymes with low hydrolysis activity, which are often overlooked. Here, we reported an intrinsic oxacillinase oxaAb amplification flanked by ISAba1. The amplification is in the chromosome and contains up to twenty-five repeats. We provided genomic, transcriptomic, and proteomic evidence that the amplification resulted in oxacillinase overproduction. Notably, no point mutations of oxaAb were found during the amplification process. Strains of A. baumannii with intrinsic amplified or external transformed ISAba1-oxaAb exhibited higher meropenem hydrolysis activity. Furthermore, the number of repeats in the amplification decreased gradually over a period of 21 days cultured with carbapenem withdrawal. However, upon re-exposure to meropenem, the ISAba1 flanked oxaAb responded rapidly, with repeat numbers reaching or exceeding pre-carbapenem withdrawal levels within 24 hours. Taken together, these findings suggest that ISAba1-mediated gene amplification and overproduction of intrinsic low-activity oxacillinase oxaAb resulted in carbapenem resistance.

7.
Environ Health Insights ; 18: 11786302241243239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828046

RESUMO

Background: Nosocomial pathogens are known to exacerbate morbidity and mortality in contemporary critical healthcare. Hospital fomites, which include inanimate surfaces, have been identified as "breeding grounds" for pathogens that cause nosocomial infections. This systematic review aimed to deliver incisive insights on nosocomial pathogens in intensive care units (ICUs) and the role of fomites as potential reservoirs for their transmission. Method: An extensive exploration of electronic databases, including PubMed and Scopus, from 1990 to 2023, was carried out between 25th and 29th May 2023, per standard PRISMA guidelines. Information were extracted from articles that reported on fomites in the ICU. Studies that did not quantitatively report the fomite contamination, and those that exclusively took samples from patients in the ICU were excluded from the analysis. Results: About 40% of the total samples collected on fomites from all the studies yielded microbial growth, with species of Staphylococcus being the most predominant. Other prevalent microbes were Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Candida spp., Enterococcus sp., and Enterobacter sp. The neonatal intensive care unit (NICU) had the highest proportion of contaminated fomites. Among known fomites, the sphygmomanometer exhibited a 100% detection rate of nosocomial pathogens. This included E. aerogenes, Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), E. coli, and K. pneumoniae. Multidrug-resistant (MDR) bacteria, such as methicillin-resistant S. aureus (MRSA), vancomycin-resistant Enterococci (VRE), extended-spectrum beta-lactamase (ESBL)-producing E. coli, and MDR Pseudomonas aeruginosa were commonly isolated on fomites in the ICUs. Conclusion: Many fomites that are readily used in patient care in the ICU harbour nosocomial pathogens. The most common fomite appeared to be mobile phones, sphygmomanometers, and stethoscopes, with Staphylococcus being the most common contaminant. Consequently, the need for rigorous disinfection and sterilization protocols on fomites in the ICU cannot be overemphasized. Additionally, heightened awareness on the subject among health professionals is crucial to mitigating the risk and burden of nosocomial infections caused by drug-resistant bacteria.

8.
Biomed Pharmacother ; 176: 116810, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823276

RESUMO

Globally, infections due to multi-drug resistant (MDR) Gram-negative bacterial (GNB) pathogens are on the rise, negatively impacting morbidity and mortality, necessitating urgent treatment alternatives. Herein, we report a detailed bio-evaluation of an ultrashort, cationic lipopeptide 'SVAP9I' that demonstrated potent antibiotic activity and acted as an adjuvant to potentiate existing antibiotic classes towards GNBs. Newly synthesized lipopeptides were screened against ESKAPE pathogens and cytotoxicity assays were performed to evaluate the selectivity index (SI). SVAP9I exhibited broad-spectrum antibacterial activity against critical MDR-GNB pathogens including members of Enterobacteriaceae (MIC 4-8 mg/L), with a favorable CC50 value of ≥100 mg/L and no detectable resistance even after 50th serial passage. It demonstrated fast concentration-dependent bactericidal action as determined via time-kill analysis and also retained full potency against polymyxin B-resistant E. coli, indicating distinct mode of action. SVAP9I targeted E. coli's outer and inner membranes by binding to LPS and phospholipids such as cardiolipin and phosphatidylglycerol. Membrane damage resulted in ROS generation, depleted intracellular ATP concentration and a concomitant increase in extracellular ATP. Checkerboard assays showed SVAP9I's synergism with narrow-spectrum antibiotics like vancomycin, fusidic acid and rifampicin, potentiating their efficacy against MDR-GNB pathogens, including carbapenem-resistant Acinetobacter baumannii (CRAB), a WHO critical priority pathogen. In a murine neutropenic thigh infection model, SVAP9I and rifampicin synergized to express excellent antibacterial efficacy against MDR-CRAB outcompeting polymyxin B. Taken together, SVAP9I's distinct membrane-targeting broad-spectrum action, lack of resistance and strong in vitro andin vivopotency in synergism with narrow spectrum antibiotics like rifampicin suggests its potential as a novel antibiotic adjuvant for the treatment of serious MDR-GNB infections.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas , Lipopeptídeos , Testes de Sensibilidade Microbiana , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Camundongos , Lipopeptídeos/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Sinergismo Farmacológico , Feminino , Humanos , Adjuvantes Farmacêuticos/farmacologia
9.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38886125

RESUMO

AIMS: To investigate the genetic profile and characterize antimicrobial resistance, including the main ß-lactam antibiotic resistance genes, in Acinetobacterbaumannii isolates from a tertiary hospital in Recife-PE, Brazil, in the post-COVID-19 pandemic period. METHODS AND RESULTS: Acinetobacter baumannii isolates were collected between 2023 and 2024 from diverse clinical samples. Antimicrobial resistance testing followed standardized protocols, with ß-lactamase-encoding genes detected via PCR and sequencing. Investigation into ISAba1 upstream of blaOXA-carbapenemase and blaADC genes was also conducted. Genetic diversity was assessed through ERIC-PCR. Among the 78 A. baumannii, widespread resistance to multiple antimicrobials was evident. Various acquired ß-lactamase-encoding genes (blaOXA-23,-24,-58,-143, blaVIM, and blaNDM) were detected. Furthermore, this is the first report of blaVIM-2 in A. baumannii isolates harboring either the blaOXA-23-like or the blaOXA-143 gene in Brazil. Molecular typing revealed a high genetic heterogeneity among the isolates, and multi-clonal dissemination. CONCLUSION: The accumulation of genetic resistance determinants underscores the necessity for stringent infection control measures and robust antimicrobial stewardship programs to curb multidrug-resistant strains.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , COVID-19 , Testes de Sensibilidade Microbiana , SARS-CoV-2 , Centros de Atenção Terciária , beta-Lactamases , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Brasil , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2/genética , Farmacorresistência Bacteriana Múltipla/genética , Proteínas de Bactérias/genética , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Farmacorresistência Bacteriana/genética
10.
GMS Hyg Infect Control ; 19: Doc25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883402

RESUMO

Background: The high prevalence of virulence-associated genes observed in Acinetobacter baumannii isolates underscores the pathogenic potential of this bacterium. The presence of these genes confers enhanced survival, evasion of host defenses, and increased virulence. In this study, we investigate the presence and distribution of genes associated with virulence and assess the antimicrobial susceptibility patterns in clinical isolates of A. baumannii. Materials and method: This research focused on examining the 50 multi-drugs resistant (MDR) strains that were included in this investigation. The identification of these strains was validated using Oxa-51. The presence of the BauA and BasD genes was determined through conventional PCR techniques. Results: The results derived from Oxa-51 PCR confirmed the identification of all 50 selected strains of A. baumannii. Additionally, both the BauA and BasD genes were successfully identified in 82% of the MDR strains. Conclusion: Moreover, the varying antibiotic resistance patterns highlight the challenge in treating A. baumannii infections effectively. Strategies such as combination therapy, antimicrobial stewardship, and infection control measures should be considered to combat this multidrug-resistant pathogen.

11.
Euro Surveill ; 29(24)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873796

RESUMO

In 2003-2023, amid 5,436 Acinetobacter baumannii isolates collected globally through the Multidrug-Resistant Organism Repository and Surveillance Network, 97 were ST19PAS, 34 of which carbapenem-resistant. Strains (n = 32) sampled after 2019 harboured either bla OXA-23, bla OXA-72, and/or bla NDM-5. Phylogenetic analysis of the 97 isolates and 11 publicly available ST19 genomes revealed three sub-lineages of carbapenemase-producing isolates from mainly Ukraine and Georgia, including an epidemic clone carrying all three carbapenemase genes. Infection control and global surveillance of carbapenem-resistant A. baumannii remain important.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Humanos , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Proteínas de Bactérias/genética , Ucrânia/epidemiologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Filogenia , Farmacorresistência Bacteriana Múltipla/genética , República da Geórgia/epidemiologia , Tipagem de Sequências Multilocus
12.
Vaccine ; 42(18): 3802-3810, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38719690

RESUMO

Due to its antimicrobial resistance characteristics, the World Health Organization (WHO) classifies A. baumannii as one of the critical priority pathogens for the development of new therapeutic strategies. Vaccination has been approached as an interesting strategy to overcome the lack of effective antimicrobials and the long time required to develop and approve new drugs. In this study, we aimed to evaluate as a vaccine the hypothetical adhesin protein CAM87009.1 in its recombinant format (rCAM87009.1) associated with aluminum hydroxide (Alhydrogel®) or biogenic silver nanoparticles (bio-AgNP) as adjuvant components against lethal infection by A. baumannii MDR strain. Both vaccine formulations were administered in three doses intramuscularly in BALB/c murine models and the vaccinated animals were tested in a challenge assay with A. baumannii MDR strain (DL100). rCAM87009.1 protein associated with both adjuvants was able to protect 100 % of animals challenged with the lethal strain during the challenge period. After the euthanasia of the animals, no A. baumannii colonies were detected in the lungs of animals vaccinated with the rCAM87009.1 protein in both formulations. Since the first immunization, high IgG antibody titers were observed (1:819,200), with results being statistically similar in both vaccine formulations evaluated. rCAM87009.1 associated with both adjuvants was capable of inducing at least one class of isotypes associated with the processes of neutralization (IgG2b and IgA for bio-AgNP and Alhydrogel®, respectively), opsonization (IgG1 in both vaccines) and complement activation (IgM and IgG3 for bio-AgNP and Alhydrogel®, respectively). Furthermore, reduced tissue damage was observed in animals vaccinated with rCAM87009.1 + bio-AgNP when compared to animals vaccinated with Alhydrogel®. Our results indicate that the rCAM87009.1 protein associated with both bio-AgNP and Alhydrogel® are combinations capable of promoting immunity against infections caused by A. baumannii MDR. Additionally, we demonstrate the potential of silver nanoparticles as alternative adjuvant molecules to the use of aluminum salts.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Adesinas Bacterianas , Adjuvantes Imunológicos , Anticorpos Antibacterianos , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Prata , Animais , Prata/administração & dosagem , Prata/farmacologia , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Camundongos , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Farmacorresistência Bacteriana Múltipla , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Modelos Animais de Doenças
13.
Arch Microbiol ; 206(6): 267, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762620

RESUMO

Acinetobacter species encode for extracellularly secreted Biofilm-associated protein (Bap), a multi-domain protein with variable molecular weights reaching several hundred kilodaltons. Bap is crucial for the development of multi-dimensional structures of mature biofilms. In our investigation, we analyzed 7338 sequences of A. baumannii from the NCBI database and found that Bap or Bap-like protein (BLP) was present in 6422 (87.52%) isolates. Further classification revealed that 12.12% carried Type-1 Bap, 68.44% had Type-2, 6.91% had Type-3, 0.05% had Type-6 or SDF-Type, and 12.51% lacked Bap or BLP. The majority of isolates with Type-1, Type-2, and Type-3 Bap belonged to ST1, ST2, and ST25, respectively. Phylogenetic analysis suggested that Type-1 Bap is the most ancient, while Type-3 and SDF-Type have evolved recently. Studying the interaction of predicted Bap structures with human CEACAM-1 and PIgR showed that Bap with its BIg13 and BIg6 domains interact with the N-terminal domain of CEACAM-1, involving Arg43 and Glu40, involved in CEACAM-1 dimerization. Also, we found that recently evolved Type-3 and SDF-Type Bap showed greater interaction with CEACAM-1 and PIgR. It can be asserted that the evolution of Bap has conferred enhanced virulence characteristics to A. baumannii with increased interaction with CEACAM-1 and PIgR. Using in silico approaches, this study explores the evolutionary, physicochemical, and structural features of A. baumannii Bap and unravels its crucial role in mediating interaction with human CEACAM-1 and PIgR through detailed structure modelling. These findings advance our understanding of A. baumannii Bap and highlight its role in pathogenesis.


Assuntos
Acinetobacter baumannii , Proteínas de Bactérias , Biofilmes , Filogenia , Acinetobacter baumannii/genética , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Infecções por Acinetobacter/microbiologia , Evolução Molecular , Simulação por Computador , Modelos Moleculares
14.
Int J Antimicrob Agents ; 64(1): 107189, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697578

RESUMO

The main objective of this study was to assess the effect of rich artificial cation-adjusted Mueller-Hinton broth (CAMHB) on the growth of three strains of Acinetobacter baumannii (ATCC 19606 and two clinical strains), either susceptible or resistant to polymyxin B (PMB), and on PMB bactericidal activity. A pharmacokinetic (PK)/pharmacodynamic (PD) modelling approach was used to characterize the effect of PMB in various conditions. Time-kill experiments were performed using undiluted CAMHB or CAMHB diluted to 50%, 25% and 10%, with or without Ca2+ and Mg2+ compensation (known to affect PMB activity), and with PMB concentrations ranging from 0.25 to 256 mg/L based on the strain's MIC. For each strain, time-kill replicates were modelled using NONMEM. Unexpectedly, dilution of CAMHB by up to 10-fold did not affect the growth rate of any of the three strains in the absence of PMB. However, the bactericidal activity of PMB increased with medium dilution, resulting in a reduction in the apparent bacterial regrowth of the various strains observed after a few hours. Data for each strain were well characterized by a PK/PD model, with two bacterial subpopulations with different susceptibility to PMB (more susceptible and less susceptible). The impact of medium dilution and cation compensation showed relatively high, unexplained between-strain variability. Further studies are needed to characterize the mechanism underlying the medium dilution effect.


Assuntos
Acinetobacter baumannii , Antibacterianos , Meios de Cultura , Testes de Sensibilidade Microbiana , Polimixina B , Acinetobacter baumannii/efeitos dos fármacos , Polimixina B/farmacologia , Polimixina B/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/farmacocinética , Humanos , Meios de Cultura/química , Viabilidade Microbiana/efeitos dos fármacos
15.
Viruses ; 16(5)2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793652

RESUMO

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Assuntos
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimologia , Bacteriófagos/classificação , Acinetobacter/virologia , Acinetobacter/genética , Acinetobacter/enzimologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Acinetobacter baumannii/virologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Glicosídeo Hidrolases
16.
BMC Microbiol ; 24(1): 173, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762474

RESUMO

BACKGROUND: The persistent surge in antimicrobial resistance represents a global disaster. The initial attachment and maturation of microbial biofilms are intimately related to antimicrobial resistance, which in turn exacerbates the challenge of eradicating bacterial infections. Consequently, there is a pressing need for novel therapies to be employed either independently or as adjuvants to diminish bacterial virulence and pathogenicity. In this context, we propose a novel approach focusing on vitamin D and vitamin K1 as potential antibiofilm agents that target Gram-negative bacteria which are hazardous to human health. RESULTS: Out of 130 Gram-negative bacterial isolates, 117 were confirmed to be A. baumannii (21 isolates, 17.9%), K. pneumoniae (40 isolates, 34.2%) and P. aeruginosa (56 isolates, 47.9%). The majority of the isolates were obtained from blood and wound specimens (27.4% each). Most of the isolates exhibited high resistance rates to ß-lactams (60.7-100%), ciprofloxacin (62.5-100%), amikacin (53.6-76.2%) and gentamicin (65-71.4%). Approximately 93.2% of the isolates were biofilm producers, with 6.8% categorized as weak, 42.7% as moderate, and 50.4% as strong biofilm producers. The minimum inhibitory concentrations (MICs) of vitamin D and vitamin K1 were 625-1250 µg mL-1 and 2500-5000 µg mL-1, respectively, against A. baumannii (A5, A20 and A21), K. pneumoniae (K25, K27 and K28), and P. aeruginosa (P8, P16, P24 and P27) clinical isolates and standard strains A. baumannii (ATCC 19606 and ATCC 17978), K. pneumoniae (ATCC 51503) and P. aeruginosa PAO1 and PAO14. Both vitamins significantly decreased bacterial attachment and significantly eradicated mature biofilms developed by the selected standard and clinical Gram-negative isolates. The anti-biofilm effects of both supplements were confirmed by a notable decrease in the relative expression of the biofilm-encoding genes cusD, bssS and pelA in A. baumannii A5, K. pneumoniae K28 and P. aeruginosa P16, respectively. CONCLUSION: This study highlights the anti-biofilm activity of vitamins D and K1 against the tested Gram-negative strains, which emphasizes the potential of these vitamins for use as adjuvant therapies to increase the efficacy of treatment for infections caused by multidrug-resistant (MDR) strains and biofilm-forming phenotypes. However, further validation through in vivo studies is needed to confirm these promising results.


Assuntos
Antibacterianos , Biofilmes , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Vitamina D , Vitamina K 1 , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Vitamina K 1/farmacologia , Antibacterianos/farmacologia , Vitamina D/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/fisiologia , Acinetobacter baumannii/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos
17.
Antibiotics (Basel) ; 13(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786172

RESUMO

This research focuses on assessing the synergistic effects of Mexican oregano (Lippia graveolens) essential oil or carvacrol when combined with the antibiotic imipenem, aiming to reduce the pathogenic viability and virulence of Acinetobacter baumannii and Pseudomonas aeruginosa. The study highlighted the synergistic effect of combining L. graveolens essential oil or carvacrol with imipenem, significantly reducing the required doses for inhibiting bacterial growth. The combination treatments drastically lowered the necessary imipenem doses, highlighting a potent enhancement in efficacy against A. baumannii and P. aeruginosa. For example, the minimum inhibitory concentrations (MIC) for the essential oil/imipenem combinations were notably low, at 0.03/0.000023 mg/mL for A. baumannii and 0.0073/0.000023 mg/mL for P. aeruginosa. Similarly, the combinations significantly inhibited biofilm formation at lower concentrations than when the components were used individually, demonstrating the strategic advantage of this approach in combating antibiotic resistance. For OXA-51, imipenem showed a relatively stable interaction during 30 ns of dynamic simulation of their interaction, indicating changes (<2 nm) in ligand positioning during this period. Carvacrol exhibited similar fluctuations to imipenem, suggesting its potential inhibition efficacy, while thymol showed significant variability, particularly at >10 ns, suggesting potential instability. With IMP-1, imipenem also displayed very stable interactions during 38 ns and demonstrated notable movement and positioning changes within the active site, indicating a more dynamic interaction. In contrast, carvacrol and thymol maintained their position within the active site only ~20 and ~15 ns, respectively. These results highlight the effectiveness of combining L. graveolens essential oil and carvacrol with imipenem in tackling the difficult-to-treat pathogens A. baumannii and P. aeruginosa.

18.
Microb Pathog ; 192: 106674, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714263

RESUMO

Acinetobacter baumannii is observed as a common species of Gram-negative bacteria that exist in soil and water. Despite being accepted as a typical component of human skin flora, it has become an important opportunistic pathogen, especially in healthcare settings. The pathogenicity of A. baumannii is attributed to its virulence factors, which include adhesins, pili, lipopolysaccharides, outer membrane proteins, iron uptake systems, autotransporter, secretion systems, phospholipases etc. These elements provide the bacterium the ability to cling to and penetrate host cells, get past the host immune system, and destroy tissue. Its infection is a major contributor to human pathophysiological conditions including pneumonia, bloodstream infections, urinary tract infections, and surgical site infections. It is challenging to treat infections brought on by this pathogen since this bacterium has evolved to withstand numerous drugs and further emergence of drug-resistant A. baumannii results in higher rates of morbidity and mortality. The long-term survival of this bacterium on surfaces of medical supplies and hospital furniture facilitates its frequent spread in humans from one habitat to another. There is a need for urgent investigations to find effective drug targets for A. baumannii as well as designing novel drugs to reduce the survival and spread of infection. In the current review, we represent the specific features, pathogenesis, and molecular intricacies of crucial drug targets of A. baumannii. This would also assist in proposing strategies and alternative therapies for the prevention and treatment of A. baumannii infections and their spread.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Farmacorresistência Bacteriana Múltipla , Fatores de Virulência , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/efeitos dos fármacos , Humanos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Fatores de Virulência/metabolismo , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Animais
19.
BMC Infect Dis ; 24(1): 459, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689210

RESUMO

BACKGROUND: Acinetobacter baumannii is an opportunistic pathogen that can cause a variety of nosocomial infections in humans. This study aimed to molecularly characterize extended-spectrum beta-lactamase (ESBL) producing and carbapenem-resistant Acinetobacter species isolated from surgical site infections (SSI). METHODS: A multicentre cross-sectional study was performed among SSI patients at four hospitals located in Northern, Southern, Southwest, and Central parts of Ethiopia. The isolates were identified by microbiological methods and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility was determined using disk diffusion. The presence of phenotypic ESBL and carbapenemase production was detected by employing standard microbiological tests, including combined disk diffusion (CDT). ESBL and carbapenem resistance determinants genes were studied by polymerase chain reaction (PCR) and sequencing. RESULTS: A total of 8.7% Acinetobacter species were identified from 493 culture-positive isolates out of 752 SSI wounds. The species identified by MALDI-TOF MS were 88.4% A. baumannii, 4.7% Acinetobacter pittii, 4.7% Acinetobacter soli, and 2.3% Acinetobacter lactucae. Of all isolates 93% were positive for ESBL enzymes according to the CDT. Using whole genome sequencing 62.8% of the A. baumannii harbored one or more beta-lactamase genes, and 46.5% harbored one or more carbapenemase producing genes. The distribution of beta-lactamases among Acinetobacter species by hospitals was 53.8%, 64.3%, 75%, and 75% at JUSH, TASH, DTCSH, and HUCSH respectively. Among ESBL genes, blaCTX-M alleles were detected in 21.4% of isolates; of these 83.3% were blaCTX-M-15. The predominant carbapenemase gene of blaOXA type was detected in 24 carbapenem-resistant A. baumannii followed by blaNDM alleles carried in 12 A. baumannii with blaNDM-1 as the most common. CONCLUSIONS: The frequency of Acinetobacter species that produce metallobetalactamases (MBLs) and ESBLs that were found in this study is extremely scary and calls for strict infection prevention and control procedures in health facilities helps to set effective antibiotics stewardship.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana , Infecção da Ferida Cirúrgica , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/epidemiologia , Etiópia/epidemiologia , Estudos Transversais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/epidemiologia , Adulto , Masculino , Pessoa de Meia-Idade , Feminino , Antibacterianos/farmacologia , Adulto Jovem , Adolescente , Idoso , Criança , Pré-Escolar , Carbapenêmicos/farmacologia , Idoso de 80 Anos ou mais , Lactente
20.
J Biomed Sci ; 31(1): 36, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622637

RESUMO

BACKGROUND: This study addresses the urgent need for infection control agents driven by the rise of drug-resistant pathogens such as Acinetobacter baumannii. Our primary aim was to develop and assess a novel endolysin, Tha-PA90, designed to combat these challenges. METHODS: Tha-PA90 incorporates an antimicrobial peptide (AMP) called thanatin at its N-terminus, enhancing bacterial outer membrane permeability and reducing host immune responses. PA90 was selected as the endolysin component. The antibacterial activity of the purified Tha-PA90 was evaluated using an in vitro colony-forming unit (CFU) reduction assay and a membrane permeability test. A549 cells were utilized to measure the penetration into the cytosol and the cytotoxicity of Tha-PA90. Finally, infection control was monitored in A. baumannii infected mice following the intraperitoneal administration of Tha-PA90. RESULTS: Tha-PA90 demonstrated remarkable in vitro efficacy, completely eradicating A. baumannii strains, even drug-resistant variants, at a low concentration of 0.5 µM. Notably, it outperformed thanatin, achieving only a < 3-log reduction at 4 µM. Tha-PA90 exhibited 2-3 times higher membrane permeability than a PA90 and thanatin mixture or PA90 alone. Tha-PA90 was found within A549 cells' cytosol with no discernible cytotoxic effects. Furthermore, Tha-PA90 administration extended the lifespan of A. baumannii-infected mice, reducing bacterial loads in major organs by up to 3 logs. Additionally, it decreased proinflammatory cytokine levels (TNF-α and IL-6), reducing the risk of sepsis from rapid bacterial lysis. Our findings indicate that Tha-PA90 is a promising solution for combating drug-resistant A. baumannii. Its enhanced efficacy, low cytotoxicity, and reduction of proinflammatory responses render it a potential candidate for infection control. CONCLUSIONS: This study underscores the significance of engineered endolysins in addressing the pressing challenge of drug-resistant pathogens and offers insights into improved infection management strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Endopeptidases , Animais , Camundongos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos , Antibacterianos/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...