Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Mol Biol Rep ; 51(1): 464, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551734

RESUMO

Adenosine receptors are important in the normal physiological function of cells and the pathogenesis of various cancer cells, including breast cancer cells. The activity of adenosine receptors in cancer cells is related to cell proliferation, angiogenesis, metastasis, immune system evasion, and interference with apoptosis. Considering the different roles of adenosine receptors in cancer cells, we intend to investigate the function of adenosine receptors and their biological pathways in breast cancer to improve understanding of therapeutically relevant signaling pathways.


Assuntos
Neoplasias da Mama , Receptor A3 de Adenosina , Humanos , Feminino , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Neoplasias da Mama/genética , Apoptose
2.
Structure ; 32(5): 523-535.e5, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38401537

RESUMO

We leveraged variable-temperature 19F-NMR spectroscopy to compare the conformational equilibria of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor (GPCR), across a range of temperatures ranging from lower temperatures typically employed in 19F-NMR experiments to physiological temperature. A2AAR complexes with partial agonists and full agonists showed large increases in the population of a fully active conformation with increasing temperature. NMR data measured at physiological temperature were more in line with functional data. This was pronounced for complexes with partial agonists, where the population of active A2AAR was nearly undetectable at lower temperature but became evident at physiological temperature. Temperature-dependent behavior of complexes with either full or partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. Cellular signaling experiments correlated with the temperature-dependent conformational equilibria of A2AAR in lipid nanodiscs but not in some detergents, underscoring the importance of the membrane environment in studies of GPCR function.


Assuntos
Receptor A2A de Adenosina , Humanos , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/química , Temperatura , Ligação Proteica , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/química , Agonistas do Receptor A2 de Adenosina/metabolismo , Ressonância Magnética Nuclear Biomolecular , Modelos Moleculares , Conformação Proteica , Células HEK293
3.
Physiol Behav ; 273: 114386, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884109

RESUMO

Repetitive motor behaviors are associated with several neurodevelopmental disorders including autism spectrum disorder. Non-invasive environmental interventions that can ameliorate repetitive behavior and be introduced in early development could benefit many. In Experiment 1, we characterized the development of repetitive circling in mice reared in standard and enriched environments. Environmental enrichment was associated with reduced repetitive behavior. In Experiment 2, two weekly injections of an A2A adenosine receptor agonist reduced repetitive behavior in mice fed a ketogenic diet. Together, these two approaches modified the environment and reduced repetitive behavior with potential implications for increased functioning of the indirect basal ganglia pathway.


Assuntos
Transtorno do Espectro Autista , Dieta Cetogênica , Camundongos , Animais , Transtorno do Espectro Autista/metabolismo , Comportamento Estereotipado/fisiologia , Modelos Animais de Doenças
4.
Cell Rep ; 42(11): 113435, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37952158

RESUMO

The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.


Assuntos
Corpo Estriado , Interneurônios , Camundongos , Animais , Camundongos Transgênicos , Corpo Estriado/metabolismo , Neostriado , Neuritos
5.
J Agric Food Chem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931326

RESUMO

Onions are versatile and nutritious food widely used in various cuisines around the world. In our ongoing pursuit of bioactive substances with health benefits from red onion (Allium cepa L.) skin, a comprehensive chemical investigation was undertaken. Consequently, a total of 44 compounds, including three previously unidentified chalcones (1-3) were extracted from red onion skin. Of these isolates, chalcones 1-4 showed high affinity to A2A adenosine receptor (A2AAR), and chalcone 2 displayed the best binding affinity to A2AAR, with the IC50 value of 33.5 nM, good A2AAR selectivity against A1AR, A2BAR, and A3AR, and high potency in the cAMP functional assay (IC50 of 913.9 nM). Importantly, the IL-2 bioassay and the cell-mediated cytotoxicity assay demonstrated that chalcone 2 could boost T-cell activation. Furthermore, the binding mechanism of chalcone 2 with hA2AAR was elucidated by molecular docking. This work highlighted that the active chalcones in red onion might have the potential to be developed as A2AAR antagonists used in cancer immunotherapy.

6.
J Appl Crystallogr ; 56(Pt 5): 1361-1370, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37791355

RESUMO

Serial crystallography has emerged as an important tool for structural studies of integral membrane proteins. The ability to collect data from micrometre-sized weakly diffracting crystals at room temperature with minimal radiation damage has opened many new opportunities in time-resolved studies and drug discovery. However, the production of integral membrane protein microcrystals in lipidic cubic phase at the desired crystal density and quantity is challenging. This paper introduces VIALS (versatile approach to high-density microcrystals in lipidic cubic phase for serial crystallography), a simple, fast and efficient method for preparing hundreds of microlitres of high-density microcrystals suitable for serial X-ray diffraction experiments at both synchrotron and free-electron laser sources. The method is also of great benefit for rational structure-based drug design as it facilitates in situ crystal soaking and rapid determination of many co-crystal structures. Using the VIALS approach, room-temperature structures are reported of (i) the archaerhodopsin-3 protein in its dark-adapted state and 110 ns photocycle intermediate, determined to 2.2 and 1.7 Å, respectively, and (ii) the human A2A adenosine receptor in complex with two different ligands determined to a resolution of 3.5 Å.

7.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905159

RESUMO

Protein function strongly depends on temperature, which is related to temperature-dependent changes in the equilibria of protein conformational states. We leveraged variable-temperature 19F-NMR spectroscopy to interrogate the temperature dependence of the conformational landscape of the human A2A adenosine receptor (A2AAR), a class A GPCR. Temperature-induced changes in the conformational equilibria of A2AAR in lipid nanodiscs were markedly dependent on the efficacy of bound drugs. While antagonist complexes displayed only modest changes as the temperature rose, both full and partial agonist complexes exhibited substantial increases in the active state population. Importantly, the temperature-dependent response of complexes with both full and partial agonists exhibited a pronounced sensitivity to the specific membrane mimetic employed. In striking contrast to observations within lipid nanodiscs, in detergent micelles the active state population exhibited different behavior for A2AAR complexes with both full and partial agonists. This underscores the importance of the protein environment in understanding the thermodynamics of GPCR activation.

8.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513291

RESUMO

Eight hundred and twenty-six human G protein-coupled receptors (GPCRs) mediate the actions of two-thirds of the human hormones and neurotransmitters and over one-third of clinically used drugs. Studying the structure and dynamics of human GPCRs in lipid bilayer environments resembling the native cell membrane milieu is of great interest as a basis for understanding structure-function relationships and thus benefits continued drug development. Here, we incorporate the human A2A adenosine receptor (A2AAR) into lipid nanodiscs, which represent a detergent-free environment for structural studies using nuclear magnetic resonance (NMR) in solution. The [15N,1H]-TROSY correlation spectra confirmed that the complex of [u-15N, ~70% 2H]-A2AAR with an inverse agonist adopts its global fold in lipid nanodiscs in solution at physiological temperature. The global assessment led to two observations of practical interest. First, A2AAR in nanodiscs can be stored for at least one month at 4 °C in an aqueous solvent. Second, LMNG/CHS micelles are a very close mimic of the environment of A2AAR in nanodiscs. The NMR signal of five individually assigned tryptophan indole 15N-1H moieties located in different regions of the receptor structure further enabled a detailed assessment of the impact of nanodiscs and LMNG/CHS micelles on the local structure and dynamics of A2AAR. As expected, the largest effects were observed near the lipid-water interface along the intra- and extracellular surfaces, indicating possible roles of tryptophan side chains in stabilizing GPCRs in lipid bilayer membranes.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Humanos , Bicamadas Lipídicas/química , Micelas , Triptofano , Agonismo Inverso de Drogas , Espectroscopia de Ressonância Magnética , Receptores Acoplados a Proteínas G , Nanoestruturas/química
9.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-37259317

RESUMO

Based on a screening of a chemical library of A2A adenosine receptor (AR) antagonists, a series of di- and tri-substituted adenine derivatives were synthesized and tested for their ability to inhibit the activity of the enzyme casein kinase 1 delta (CK1δ) and to bind adenosine receptors (ARs). Some derivatives, here called "dual anta-inhibitors", demonstrated good CK1δ inhibitory activity combined with a high binding affinity, especially for the A2AAR. The N6-methyl-(2-benzimidazolyl)-2-dimethyamino-9-cyclopentyladenine (17, IC50 = 0.59 µM and KiA2A = 0.076 µM) showed the best balance of A2AAR affinity and CK1δ inhibitory activity. Computational studies were performed to simulate, at the molecular level, the protein-ligand interactions involving the compounds of our series. Hence, the dual anta-inhibitor 17 could be considered the lead compound of new therapeutic agents endowed with synergistic effects for the treatment of chronic neurodegenerative and cancer diseases.

10.
Biomolecules ; 13(6)2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371538

RESUMO

G protein-coupled receptors (GPCRs) are embedded in phospholipid membrane bilayers with cholesterol representing 34% of the total lipid content in mammalian plasma membranes. Membrane lipids interact with GPCRs structures and modulate their function and drug-stimulated signaling through conformational selection. It has been shown that anionic phospholipids form strong interactions between positively charged residues in the G protein and the TM5-TM6-TM 7 cytoplasmic interface of class A GPCRs stabilizing the signaling GPCR-G complex. Cholesterol with a high content in plasma membranes can be identified in more specific sites in the transmembrane region of GPCRs, such as the Cholesterol Consensus Motif (CCM) and Cholesterol Recognition Amino Acid Consensus (CRAC) motifs and other receptor dependent and receptor state dependent sites. Experimental biophysical methods, atomistic (AA) MD simulations and coarse-grained (CG) molecular dynamics simulations have been applied to investigate these interactions. We emphasized here the impact of phosphatidyl inositol-4,5-bisphosphate (PtdIns(4,5)P2 or PIP2), a minor phospholipid component and of cholesterol on the function-related conformational equilibria of the human A2A adenosine receptor (A2AR), a representative receptor in class A GPCR. Several GPCRs of class A interacted with PIP2 and cholesterol and in many cases the mechanism of the modulation of their function remains unknown. This review provides a helpful comprehensive overview for biophysics that enter the field of GPCRs-lipid systems.


Assuntos
Simulação de Dinâmica Molecular , Receptor A2A de Adenosina , Receptores Acoplados a Proteínas G , Animais , Humanos , Sítios de Ligação , Colesterol/metabolismo , Mamíferos/metabolismo , Fosfolipídeos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P1 , Receptor A2A de Adenosina/metabolismo
11.
Biomolecules ; 13(6)2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371547

RESUMO

Alzheimer's disease (AD) is the most prevalent kind of dementia with roughly 135 million cases expected in the world by 2050. Unfortunately, current medications for the treatment of AD can only relieve symptoms but they do not act as disease-modifying agents that can stop the course of AD. Caffeine is one of the most widely used drugs in the world today, and a number of clinical studies suggest that drinking coffee may be good for health, especially in the fight against neurodegenerative conditions such as AD. Experimental works conducted "in vivo" and "in vitro" provide intriguing evidence that caffeine exerts its neuroprotective effects by antagonistically binding to A2A receptors (A2ARs), a subset of GPCRs that are triggered by the endogenous nucleoside adenosine. This review provides a summary of the scientific data supporting the critical role that A2ARs play in memory loss and cognitive decline, as well as the evidence supporting the protective benefits against neurodegeneration that may be attained by caffeine's antagonistic action on these receptors. They are a novel and fascinating target for regulating and enhancing synaptic activity, achieving symptomatic and potentially disease-modifying effects, and protecting against neurodegeneration.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Cafeína/farmacologia , Cafeína/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Café/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Receptores Purinérgicos P1 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
Structure ; 31(7): 836-847.e6, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236187

RESUMO

Cholesterol is a critical component of mammalian cell membranes and an allosteric modulator of G protein-coupled receptors (GPCRs), but divergent views exist on the mechanisms by which cholesterol influences receptor functions. Leveraging the benefits of lipid nanodiscs, i.e., quantitative control of lipid composition, we observe distinct impacts of cholesterol in the presence and absence of anionic phospholipids on the function-related conformational dynamics of the human A2A adenosine receptor (A2AAR). Direct receptor-cholesterol interactions drive activation of agonist-bound A2AAR in membranes containing zwitterionic phospholipids. Intriguingly, the presence of anionic lipids attenuates cholesterol's impact through direct interactions with the receptor, highlighting a more complex role for cholesterol that depends on membrane phospholipid composition. Targeted amino acid replacements at two frequently predicted cholesterol interaction sites showed distinct impacts of cholesterol at different receptor locations, demonstrating the ability to delineate different roles of cholesterol in modulating receptor signaling and maintaining receptor structural integrity.


Assuntos
Fosfolipídeos , Receptores Acoplados a Proteínas G , Animais , Humanos , Fosfolipídeos/metabolismo , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Conformação Molecular , Colesterol/metabolismo , Simulação de Dinâmica Molecular , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/química , Mamíferos/metabolismo
13.
FEBS Lett ; 597(11): 1541-1549, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37073622

RESUMO

G protein-coupled receptors (GPCRs) transmit signals from drugs across cell membranes, leading to associated physiological effects. To study the structural basis of the transmembrane signalling, in-membrane chemical modification (IMCM) has previously been introduced for 19 F-labelling of GPCRs expressed in Spodoptera frugiperda (Sf9) insect cells. Here, IMCM is used with the A2A adenosine receptor (A2A AR) expressed in Pichia pastoris; 19 F-NMR revealed nearly complete solvent protection of the A2A AR transmembrane domain in the membrane and in 2,2-didecylpropane-1,3-bis-ß-D-maltopyranoside (LMNG)/cholesteryl hemisuccinate (CHS) micelles, and extensive solvent accessibility for A2A AR in n-dodecyl ß-D-maltoside (DDM)/CHS micelles. No Cys residue dominated non-specific labelling with 2,2,2-trifluoroethanethiol. These observations yield an improved protocol for IMCM 19 F-labelling of GPCRs and new insights into variable solvent accessibility for function-related characterization of GPCRs.


Assuntos
Micelas , Receptores Acoplados a Proteínas G , Solventes , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/química , Membranas/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo
14.
Int Immunopharmacol ; 114: 109567, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529024

RESUMO

CD39-mediated inhibition of natural killer (NK) cell activity has been demonstrated, but the characteristics of CD39+ NK cells in humans are not known. We investigated the characteristics of human circulating CD39+ NK cells. In healthy donors, the proportion of circulating CD39+ NK cells in total NK cells was relatively low compared with that of CD39- NK cells. Nonetheless, a higher proportion of CD39+ NK cells expressed CD107a. Similarly, a higher proportion of CD39+ NK cells expressed CD107a in patients with hepatitis B virus or patients with hepatocellular carcinoma. Stimulation with NK-sensitive K562 cells or interleukin (IL)-12/IL-18 activated CD39+ NK cells to express higher levels of CD107a, IFN-γ and TNF-α, relative to CD39- NK cells. Importantly, IL-15 induced the generation of CD39+ NK cells. In contrast, A2A adenosine receptor (A2AR) ligation suppressed the generation of CD39+ NK cells by inhibiting IL-15 signaling. These data for the first time demonstrated that A2AR counteracts IL-15-induced generation of human CD39+ NK cells, which have a stronger cytotoxicity than CD39- NK cells. IL-15-induced human CD39+ NK cells might be better choice for immunotherapy based on adoptive transfer of NK cells.


Assuntos
Interleucina-15 , Células Matadoras Naturais , Humanos , Citotoxicidade Imunológica , Receptor A2A de Adenosina/metabolismo
15.
Arthritis Res Ther ; 24(1): 265, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494860

RESUMO

Loss of bone is a common medical problem and, while it can be treated with available therapies, some of these therapies have critical side effects. We have previously demonstrated that CGS21680, a selective A2A adenosine receptor agonist, prevents bone loss, but its on-target toxicities (hypotension, tachycardia) and frequent dosing requirements make it unusable in the clinic. We therefore generated a novel alendronate-CGS21680 conjugate (MRS7216), to target the agonist to bone where it remains for long periods thereby diminishing the frequency of administration and curtailing side effects. MRS7216 was synthesized from CGS21680 by sequential activation of the carboxylic acid moiety and reacting with an appropriate amino acid (PEG, alendronic acid) under basic conditions. MRS7216 was tested on C57BL/6J (WT) mice with established osteoporosis (OP) and WT or A2A KO mice with wear particle-induced inflammatory osteolysis (OL). Mice were treated weekly with MRS7216 (10mg/kg). Bone formation was studied after in vivo labeling with calcein/Alizarin Red, and µCT and histology analyses were performed. In addition, human primary osteoblasts and osteoclasts were cultured using bone marrow discarded after hip replacement. Receptor binding studies demonstrate that MRS7216 efficiently binds the A2A adenosine receptor. MRS7216-treated OP and OL mice had significant new bone formation and reduced bone loss compared to vehicle or alendronate-treated mice. Histological analysis showed that MRS7216 treatment significantly reduced osteoclast number and increased osteoblast number in murine models. Interestingly, cultured human osteoclast differentiation was inhibited, and osteoblast differentiation was stimulated by the compound indicating that MRS7216 conjugates represent a novel therapeutic approach to treat osteoporosis and osteolysis.


Assuntos
Reabsorção Óssea , Osteólise , Osteoporose Pós-Menopausa , Feminino , Humanos , Camundongos , Animais , Osteogênese , Alendronato/efeitos adversos , Osteoporose Pós-Menopausa/tratamento farmacológico , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/patologia , Camundongos Endogâmicos C57BL , Reabsorção Óssea/metabolismo , Osteólise/tratamento farmacológico , Osteólise/prevenção & controle , Osteólise/patologia , Osteoclastos/metabolismo , Modelos Animais de Doenças , Ligante RANK/metabolismo
16.
Cell Rep ; 41(12): 111844, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36543140

RESUMO

G protein-coupled receptor (GPCR) conformational plasticity enables formation of ternary signaling complexes with intracellular proteins in response to binding extracellular ligands. We investigate the dynamic process of GPCR complex formation in solution with the human A2A adenosine receptor (A2AAR) and an engineered Gs protein, mini-Gs. 2D nuclear magnetic resonance (NMR) data with uniform stable isotope-labeled A2AAR enabled a global comparison of A2AAR conformations between complexes with an agonist and mini-Gs and with an agonist alone. The two conformations are similar and show subtle differences at the receptor intracellular surface, supporting a model whereby agonist binding alone is sufficient to populate a conformation resembling the active state. However, an A2AAR "hot spot" connecting the extracellular ligand-binding pocket to the intracellular surface is observed to be highly dynamic in the ternary complex, suggesting a mechanism for allosteric connection between the bound G protein and the drug-binding pocket involving structural plasticity of the "toggle switch" tryptophan.


Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Humanos , Proteínas de Ligação ao GTP/metabolismo , Conformação Molecular , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Espectroscopia de Ressonância Magnética , Ligantes , Receptor A2A de Adenosina/metabolismo , Conformação Proteica
17.
Eur J Med Chem ; 241: 114620, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35933788

RESUMO

The past fifty years have been marked by the surge of neurodegenerative diseases. Unfortunately, current treatments are only symptomatic. Hence, the search for new and innovative therapeutic targets for curative treatments becomes a major challenge. Among these targets, the adenosine A2A receptor (A2AAR) has been the subject of much research in recent years. In this paper, we report the design, synthesis and pharmacological analysis of quinazoline derivatives as A2AAR antagonists with high ligand efficiency. This class of molecules has been discovered by a virtual screening and bears no structural semblance with reference antagonist ZM-241385. More precisely, we identified a series of 2-aminoquinazoline as promising A2AAR antagonists. Among them, one compound showed a high affinity towards A2AAR (21a, Ki = 20 nM). We crystallized this ligand in complex with A2AAR, confirming one of our predicted docking poses and opening up possibilities for further optimization to derive selective ligands for specific adenosine receptor subtypes.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Antagonistas de Receptores Purinérgicos P1/farmacologia , Quinazolinas/farmacologia , Receptor A2A de Adenosina/química , Relação Estrutura-Atividade
18.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35631343

RESUMO

The cerebral expression of the A2A adenosine receptor (A2AAR) is altered in neurodegenerative diseases such as Parkinson's (PD) and Huntington's (HD) diseases, making these receptors an attractive diagnostic and therapeutic target. We aimed to further investigate the pharmacokinetic properties in the brain of our recently developed A2AAR-specific antagonist radiotracer [18F]FLUDA. For this purpose, we retrospectively analysed dynamic PET studies of healthy mice and rotenone-treated mice, and conducted dynamic PET studies with healthy pigs. We performed analysis of mouse brain time-activity curves to calculate the mean residence time (MRT) by non-compartmental analysis, and the binding potential (BPND) of [18F]FLUDA using the simplified reference tissue model (SRTM). For the pig studies, we performed a Logan graphical analysis to calculate the radiotracer distribution volume (VT) at baseline and under blocking conditions with tozadenant. The MRT of [18F]FLUDA in the striatum of mice was decreased by 30% after treatment with the A2AAR antagonist istradefylline. Mouse results showed the highest BPND (3.9 to 5.9) in the striatum. SRTM analysis showed a 20% lower A2AAR availability in the rotenone-treated mice compared to the control-aged group. Tozadenant treatment significantly decreased the VT (14.6 vs. 8.5 mL · g-1) and BPND values (1.3 vs. 0.3) in pig striatum. This study confirms the target specificity and a high BPND of [18F]FLUDA in the striatum. We conclude that [18F]FLUDA is a suitable tool for the non-invasive quantitation of altered A2AAR expression in neurodegenerative diseases such as PD and HD, by PET.

20.
Molecules ; 27(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458588

RESUMO

The A2A adenosine receptor (A2AAR) is one of the four subtypes activated by nucleoside adenosine, and the molecules able to selectively counteract its action are attractive tools for neurodegenerative disorders. In order to find novel A2AAR ligands, two series of compounds based on purine and triazolotriazine scaffolds were synthesized and tested at ARs. Compound 13 was also tested in an in vitro model of neuroinflammation. Some compounds were found to possess high affinity for A2AAR, and it was observed that compound 13 exerted anti-inflammatory properties in microglial cells. Molecular modeling studies results were in good agreement with the binding affinity data and underlined that triazolotriazine and purine scaffolds are interchangeable only when 5- and 2-positions of the triazolotriazine moiety (corresponding to the purine 2- and 8-positions) are substituted.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Purinas/química , Receptor A2A de Adenosina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...