Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000134

RESUMO

Stem cells possess the ability to differentiate into different lineages and the ability to self-renew, thus representing an excellent tool for regenerative medicine. They can be isolated from different tissues, including the adipose tissue. Adipose tissue and human adipose-derived stem cells (hADSCs) are privileged candidates for regenerative medicine procedures or other plastic reconstructive surgeries. The cellular environment is able to influence the fate of stem cells residing in the tissue. In a previous study, we exposed hADSCs to an exhausted medium of a breast cancer cell line (MCF-7) recovered at different days (4, 7, and 10 days). In the same paper, we inferred that the medium was able to influence the behaviour of stem cells. Considering these results, in the present study, we evaluated the expression of the major genes related to adipogenic and osteogenic differentiation. To confirm the gene expression data, oil red and alizarin red colorimetric assays were performed. Lastly, we evaluated the expression of miRNAs influencing the differentiation process and the proliferation rate, maintaining a proliferative state. The data obtained confirmed that cells exposed to the medium maintained a stem and proliferative state that could lead to a risky proliferative phenotype.


Assuntos
Tecido Adiposo , Diferenciação Celular , Proliferação de Células , Osteogênese , Humanos , Diferenciação Celular/efeitos dos fármacos , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Adipogenia/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Meios de Cultura/farmacologia , Meios de Cultura/química
2.
Int J Nanomedicine ; 19: 6015-6033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911504

RESUMO

Wound healing in diabetic patients is frequently hampered. Adipose-derived stem cell exosomes (ADSC-eoxs), serving as a crucial mode of intercellular communication, exhibit promising therapeutic roles in facilitating wound healing. This review aims to comprehensively outline the molecular mechanisms through which ADSC-eoxs enhance diabetic wound healing. We emphasize the biologically active molecules released by these exosomes and their involvement in signaling pathways associated with inflammation modulation, cellular proliferation, vascular neogenesis, and other pertinent processes. Additionally, the clinical application prospects of the reported ADSC-eoxs are also deliberated. A thorough understanding of these molecular mechanisms and potential applications is anticipated to furnish a theoretical groundwork for combating diabetic wound healing.


Assuntos
Tecido Adiposo , Exossomos , Células-Tronco , Cicatrização , Humanos , Cicatrização/fisiologia , Tecido Adiposo/citologia , Animais , Diabetes Mellitus/terapia , Transdução de Sinais , Proliferação de Células/efeitos dos fármacos
3.
Aesthetic Plast Surg ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814346

RESUMO

BACKGROUND: Breast lipofilling, a popular cosmetic and reconstructive procedure, involves the transplantation of autologous fat to enhance breast volume and contour. Despite its widespread use, cell processing and the aftertreatment remain controversial. This study investigates the pressure applied by a compression bra and reports in vitro stress tests of processed and unprocessed fat cells. METHODS: Clinical bra pressure measurements were conducted on a cohort of 45 patients following lipofilling, reduction mammoplasties and DIEP flaps. Laboratory analysis included cell vitality testing using Resazurin assays of processed and unprocessed fat cells after exposure to mechanical or hyperbaric pressure. RESULTS: Our findings show a mean overall pressure value of the compression bra for all patients of 6.7 ± 5.7 mmHg (range 0-35). Cell processing is superior to sedimentation only regarding fat cell vitality. However, neither mechanical pressure within the specified range nor hyperbaric oxygen exposure significantly affected fat graft survival as measured by Resazurin assays. CONCLUSION: The in vitro measurements showed that it was impossible to harm fat cells with external pressure during lipofilling procedures, regardless of their processing. In the clinical context, the compression bra applied pressure values deceeding the perfusion pressure and may therefore not diminish oxygen supply nor harm the transplanted cells. Therefore, we recommend the use of a compression bra for all lipofilling procedures around the breast. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to Table of Contents or online Instructions to Authors www.springer.com/00266.

4.
Organogenesis ; 20(1): 2356339, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38796830

RESUMO

This study is to investigate the therapeutical effect and mechanisms of human-derived adipose mesenchymal stem cells (ADSC) in relieving adriamycin (ADR)-induced nephropathy (AN). SD rats were separated into normal group, ADR group, ADR+Losartan group (20 mg/kg), and ADR + ADSC group. AN rats were induced by intravenous injection with adriamycin (8 mg/kg), and 4 d later, ADSC (2 × 105 cells/mouse) were administrated twice with 2 weeks interval time (i.v.). The rats were euthanized after the 6 weeks' treatment. Biochemical indicators reflecting renal injury, such as blood urea nitrogen (BUN), neutrophil gelatinase alpha (NGAL), serum creatinine (Scr), inflammation, oxidative stress, and pro-fibrosis molecules, were evaluated. Results demonstrated that we obtained high qualified ADSCs for treatment determined by flow cytometry, and ADSCs treatment significantly ameliorated renal injuries in DN rats by decreasing BUN, Scr and NGAL in peripheral blood, as well as renal histopathological injuries, especially protecting the integrity of podocytes by immunofluorescence. Furthermore, ADSCs treatment also remarkably reduced the renal inflammation, oxidative stress, and fibrosis in DN rats. Preliminary mechanism study suggested that the ADSCs treatment significantly increased renal neovascularization via enhancing proangiogenic VEGF production. Pharmacodynamics study using in vivo imaging confirmed that ADSCs via intravenous injection could accumulate into the kidneys and be alive at least 2 weeks. In a conclusion, ADSC can significantly alleviate ADR-induced nephropathy, and mainly through reducing oxidative stress, inflammation and fibrosis, as well as enhancing VEGF production.


Assuntos
Tecido Adiposo , Doxorrubicina , Nefropatias , Ratos Sprague-Dawley , Animais , Humanos , Tecido Adiposo/citologia , Masculino , Nefropatias/induzido quimicamente , Nefropatias/terapia , Ratos , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica , Transplante de Células-Tronco Mesenquimais , Estresse Oxidativo/efeitos dos fármacos , Rim/patologia , Fibrose , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Estromais , Angiogênese
5.
Cell Biol Toxicol ; 40(1): 39, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789630

RESUMO

Hypertrophic scar (HS) is characterized by excessive collagen deposition and myofibroblasts activation. Endothelial-to-mesenchymal transition (EndoMT) and oxidative stress were pivotal in skin fibrosis process. Exosomes derived from adipose tissue-derived stem cells (ADSC-Exo) have the potential to attenuate EndoMT and inhibit fibrosis. The study revealed reactive oxygen species (ROS) levels were increased during EndoMT occurrence of dermal vasculature of HS. The morphology of endothelial cells exposure to H2O2, serving as an in vitro model of oxidative stress damage, transitioned from a cobblestone-like appearance to a spindle-like shape. Additionally, the levels of endothelial markers decreased in H2O2-treated endothelial cell, while the expression of fibrotic markers increased. Furthermore, H2O2 facilitated the accumulation of ROS, inhibited cell proliferation, retarded its migration and suppressed tube formation in endothelial cell. However, ADSC-Exo counteracted the biological effects induced by H2O2. Subsequently, miRNAs sequencing analysis revealed the significance of mir-486-3p in endothelial cell exposed to H2O2 and ADSC-Exo. Mir-486-3p overexpression enhanced the acceleration of EndoMT, its inhibitors represented the attenuation of EndoMT. Meanwhile, the target regulatory relationship was observed between mir-486-3p and Sirt6, whereby Sirt6 exerted its anti-EndoMT effect through Smad2/3 signaling pathway. Besides, our research had successfully demonstrated the impact of ADSC-Exo and mir-486-3p on animal models. These findings of our study collectively elucidated that ADSC-Exo effectively alleviated H2O2-induced ROS and EndoMT by inhibiting the mir-486-3p/Sirt6/Smad axis.


Assuntos
Tecido Adiposo , Exossomos , Células Endoteliais da Veia Umbilical Humana , Peróxido de Hidrogênio , MicroRNAs , Estresse Oxidativo , Transdução de Sinais , Sirtuínas , Animais , Humanos , Tecido Adiposo/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/metabolismo , Sirtuínas/genética , Proteínas Smad/metabolismo , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos
6.
Regen Ther ; 27: 354-364, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38645280

RESUMO

Background: The senescence of endothelial cells is of great importance involving in atherosclerosis (AS) development. Recent studies have proved the protective role of mesenchymal stem cell-derived extracellular vesicles in AS, herein, we further desired to unvei their potential regulatory mechanisms in endothelial cell senescence. Methods: Senescence induced by H2O2 in primary mouse aortic endothelial cells (MAECs) was evaluated by SA-ß-gal staining. Targeted molecule expression was detected by qRT-PCR and Western blotting. The biological functions of MAECs were determined by CCK-8, flow cytometry, transwell, and tube formation assays. Oxidative injury was assessed by LDH, total and lipid ROS, LPO and MDA levels. The proliferation of adipose-derived mesenchymal stem cell (ADSCs) was analyzed by EdU assay. Effect of ADSCs-derived extracellular vesicles (ADSC-EVs) on AS was investigated in HFD-fed ApoE-/- mice. Results: miR-674-5p was up-regulated, while C1q/TNF-related protein 9 (CTRP9) was down-regulated in H2O2-induced senescent MAECs. CTRP9 was demonstrated as a target gene of miR-674-5p. miR-674-5p inhibition restrained senescence, oxidative stress, promoted proliferation, migration, and angiogenesis of H2O2-stimulated MAECs via enhancing CTRP9 expression. Moreover, treatment with ADSC-EVs inhibited H2O2-induced senescence and dysfunction of MAECs through regulating miR-674-5p/CTRP9 axis. In the in vivo AS mouse model, ADSC-EVs combination with miR-674-5p silencing slowed down AS progression via up-regulation of CTRP9. Conclusion: ADSC-EVs repressed endothelial cell senescence and improved dysfunction via promotion of CTRP9 expression upon miR-674-5p deficiency during AS progression, which might provide vital evidence for ADSC-EVs as a promising therapy for AS.

7.
Front Bioeng Biotechnol ; 12: 1347995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628439

RESUMO

The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.

8.
J Nanobiotechnology ; 22(1): 112, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491475

RESUMO

The challenges posed by delayed atrophic healing and nonunion stand as formidable obstacles in osteoporotic fracture treatment. The processes of type H angiogenesis and osteogenesis emerge as pivotal mechanisms during bone regeneration. Notably, the preconditioning of adipose-derived stem cell (ADSC) exosomes under hypoxic conditions has garnered attention for its potential to augment the secretion and functionality of these exosomes. In the present investigation, we embarked upon a comprehensive elucidation of the underlying mechanisms of hypo-ADSC-Exos within the milieu of osteoporotic bone regeneration. Our findings revealed that hypo-ADSC-Exos harboured a preeminent miRNA, namely, miR-21-5p, which emerged as the principal orchestrator of angiogenic effects. Through in vitro experiments, we demonstrated the capacity of hypo-ADSC-Exos to stimulate the proliferation, migration, and angiogenic potential of human umbilical vein endothelial cells (HUVECs) via the mediation of miR-21-5p. The inhibition of miR-21-5p effectively attenuated the proangiogenic effects mediated by hypo-ADSC-Exos. Mechanistically, our investigation revealed that exosomal miR-21-5p emanating from hypo-ADSCs exerts its regulatory influence by targeting sprouly1 (SPRY1) within HUVECs, thereby facilitating the activation of the PI3K/AKT signalling pathway. Notably, knockdown of SPRY1 in HUVECs was found to potentiate PI3K/AKT activation and, concomitantly, HUVEC proliferation, migration, and angiogenesis. The culminating stage of our study involved a compelling in vivo demonstration wherein GelMA loaded with hypo-ADSC-Exos was validated to substantially enhance local type H angiogenesis and concomitant bone regeneration. This enhancement was unequivocally attributed to the exosomal modulation of SPRY1. In summary, our investigation offers a pioneering perspective on the potential utility of hypo-ADSC-Exos as readily available for osteoporotic fracture treatment.


Assuntos
Exossomos , Gelatina , Células-Tronco Mesenquimais , Metacrilatos , MicroRNAs , Fraturas por Osteoporose , Humanos , Fraturas por Osteoporose/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Angiogênese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Fisiológica , MicroRNAs/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipóxia/metabolismo
9.
Methods Mol Biol ; 2783: 335-347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478245

RESUMO

Bioenergetic and biosynthetic processes are key indicators regulating adipose-derived stromal/stem cell (ADSC) function, health, and differentiation. A common method used to metabolically profile cells is the Seahorse XF Analyzer. This live-cell assay can be used to define key metabolic pathways, including glycolysis and oxidative phosphorylation. Here, we share optimized protocols to characterize metabolism of ADSCs under basal conditions and provide insight into further assays defining metabolic changes and/or dependency during ADSC differentiation.


Assuntos
Smegmamorpha , Animais , Smegmamorpha/metabolismo , Adipócitos , Metabolismo Energético , Fosforilação Oxidativa , Glicólise , Tecido Adiposo/metabolismo
10.
Mol Cell Endocrinol ; 588: 112213, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556162

RESUMO

OBJECTIVE: Difficult-to-heal wound is a prevalent and significant complication of diabetes, characterized by impaired functionality of epithelial cells such as fibroblasts. This study aims to investigate the potential mechanism of ADSC-Exos promoting diabetic wound healing by regulating fibroblast function. MATERIALS AND METHODS: ADSC-Exos were confirmed through TEM, NTA, and Western Blot techniques. The study conducted on rat skin fibroblasts (RSFs) exposed to 33 mmol/L glucose in vitro. We used cck-8, EDU, transwell, and scratch assays to verify the proliferation and migration of RSFs. Furthermore, levels of TGF-ß1 and α-SMA proteins were determined by immunofluorescence and Western Blot. RSFs were transfected with miR-128-1-5p mimics and inhibitors, followed by quantification of TGF-ß1, α-SMA, Col I and Smad2/3 protein levels using Western Blot. In vivo, the effects of ADSC-Exos on diabetic wounds were assessed using digital imaging, histological staining, as well as Western Blot analysis. RESULTS: In vitro, ADSC-Exos significantly enhanced proliferation and migration of RSFs while reducing the expression of TGF-ß1 and α-SMA. In vivo, ADSC-Exos effectively promoted diabetic wound healing and mitigated scar fibrosis. Additionally, ADSC-Exos exhibited elevated levels of miR-128-1-5p, which targets TGF-ß1, resulting in a notable reduction in TGF-ß1, α-SMA, Col I and smad2/3 phosphorylation in RSFs. CONCLUSION: In conclusion, our results demonstrated that ADSC-Exos promoted diabetic wound healing, and inhibited skin fibrosis by regulating miR-128-1-5p/TGF-ß1/Smad signaling pathway, which provides a promising innovative treatment for diabetic wound healing.


Assuntos
Diabetes Mellitus Experimental , Exossomos , Fibroblastos , Fibrose , Células-Tronco Mesenquimais , MicroRNAs , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Cicatrização , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Fator de Crescimento Transformador beta1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Exossomos/metabolismo , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Fibroblastos/metabolismo , Masculino , Proliferação de Células , Movimento Celular , Proteína Smad2/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Proteínas Smad/metabolismo
11.
Tissue Eng Part A ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482791

RESUMO

Adipose-derived stem cells (ADSC) are nowadays one of the most exploited cells in regenerative medicine. They are fast growing, capable of enhancing axonal elongation, support and locally stimulate Schwann cells (SCs), and protect de-innervated muscles from atrophy after a peripheral nerve injury. With the aim of developing a bio-safe, clinically translatable cell-therapy, we assessed the effect of ADSC pre-expanded with human platelet lysate in an in vivo rat model, delivering the cells into a 15 mm critical-size sciatic nerve defect embedded within a laminin-peptide-functionalized hydrogel (Biogelx-IKVAV) wrapped by a poly-ɛ-caprolactone (PCL) nerve conduit. ADSC retained their stemness, their immunophenotype and proliferative activity when tested in vitro. At 6 weeks post-implantation, robust regeneration was observed across the critical-size gap as evaluated by both the axonal elongation (anti-NF 200) and SC proliferation (anti-S100) within the human ADSC-IKVAV filled PCL conduit. All the other experimental groups manifested significantly lower levels of growth cone elongation. The histological gastrocnemius muscle analysis was comparable with no quantitative significant differences among the experimental groups. Taken together, these results suggest that ADSC encapsulated in Biogelx-IKVAV are a potential path to improve the efficacy of nerve regeneration. New perspectives can be pursued for the development of a fully synthetic bioengineered nerve graft for the treatment of peripheral nerve injury.

12.
Regen Ther ; 25: 290-301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38318480

RESUMO

Aim: This study aims to explore the mechanism of circ- AMOT-like protein 1 (Amotl1) in extracellular vesicles (Evs) derived from adipose-derived stromal cells (ADSCs) regulating SPARC translation in wound healing process. Methods: The morphology, wound healing rate of the wounds and Ki67 positive rate in mouse wound healing models were assessed by H&E staining and immunohistochemistry (IHC). The binding of IGF2BP2 and SPARC was verified by RNA pull-down. Adipose-derived stromal cells (ADSCs) were isolated and verified. The Evs from ADSCs (ADSC-Evs) were analyzed. Results: Overexpression of SPARC can promote the wound healing process in mouse models. IGF2BP2 can elevate SPARC expression to promote the proliferation and migration of HSFs. circ-Amotl1 in ADSC-Evs can increase SPARC expression by binding IGF2BP2 to promote the proliferation and migration of HSFs. Conclusion: ADSC-Evs derived circ-Amotl1 can bind IGF2BP2 to increase SPARC expression and further promote wound healing process.

13.
Arch Biochem Biophys ; 753: 109893, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309681

RESUMO

Adipose tissue-derived stem cells (ADSCs) are a kind of stem cells with multi-directional differentiation potential, which mainly restore tissue repair function and promote cell regeneration. It can be directionally differentiated into Schwann-like cells to promote the repair of peripheral nerve injury. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in the repair of nerve injury, but the underlying mechanism remains unclear, which seriously limits its further application.The study aimed to identify the molecular mechanism by which overexpression of glial cell line-derived neurotrophic factor (GDNF) facilitates the differentiation of ADSCs into Schwann cells, enhancing nerve regeneration after injury. In vitro, ADSCs overexpressing GDNF for 48 h exhibited changes in their morphology, with 80% of the cells having two or more prominences. Compared with that of ADSCs, GDNF-ADSCs exhibited increased expression of the Schwann cell marker S100, nerve damage repair-related factors.ADSC cells in normal culture and ADSC cells were overexpressing GDNF(GDNF-ADSCs) were analysed using TMT-Based Proteomic Analysis and revealed a significantly higher expression of MTA1 in GDNF-ADSCs than in control ADSCs. Hes1 expression was significantly higher in GDNF-ADSCs than in ADSCs and decreased by MTA1 silencing, along with a simultaneous decrease in the expression of S100 and nerve damage repair factors. These findings indicate that GDNF promotes the differentiation of ADSCs into Schwann cells and induces factors that accelerate peripheral nerve damage repair.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Proteômica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Regeneração Nervosa , Tecido Adiposo , Diferenciação Celular , Células de Schwann
14.
Heliyon ; 10(1): e22802, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163237

RESUMO

Background: Diabetes is common yet challenging chronic disease, that affects a wide range of people around the world. Complex cellular environments around diabetic wounds tend to damage the function of effector cells, including vascular endothelial cells (VECs), fibroblasts and epithelial cells. This study aims to analyze the differences between diabetic wounds and normal skin as well as whether adipose-derived stem cell (ADSC) exosome could promote healing of diabetic wound. Methods: Human diabetic wounds and normal skin were collected and stained with HE, Masson, CD31 and 8-hydroxy-2 deoxyguanosine immunohistochemical staining. RNA-seq data were collected for further bioinformatics analysis. ADSC exosomes were isolated and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. The effect of ADSC exosomes on diabetic wound healing was assessed on full thickness wounds in mice. To further verify the regulative impact of ADSCs exosomes in high glucose treated fibroblasts, we isolated fibroblasts from normal skin tissue and measured the cell viability, apoptosis rate, proliferation and migration of fibroblasts. In addition, collagen formation and fibrosis-related molecules were also detected. To further disclose the mechanism of ADSC exosomes on the function of high glucose treated fibroblasts, we detected the expression of apoptosis related molecules including BCL2, Bax, and cleaved caspase-3. Results: Histological observation indicated that perilesional skin tissues from diabetic patients showed structural disorder, less collagen disposition and increased injury compared with normal skin. Bioinformatics analysis showed that the levels of inflammatory and collagen synthesis related molecules, as well as oxidative stress and apoptosis related molecules, were significantly changed. Furthermore, we found that ADSC exosomes could not only speed up diabetic wound healing, but could also improve healing quality. ADSC exosomes restored high glucose induced damage to cell viability, migration and proliferation activity, as well as fibrosis-related molecules such as SMA, collagen 1 and collagen 3. In addition, we verified that ADSC exosomes downregulated high glucose induced increased apoptosis rate in fibroblast and the protein expression of Bax as well as cleaved caspases 3. Conclusions: This study indicated that ADSC exosomes alleviated high glucose induced damage to fibroblasts and accelerate diabetic wound healing by inhibiting Bax/caspase 3.

15.
Tissue Eng Regen Med ; 21(1): 123-135, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755664

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a chronic disease with carcinogenic tendency that poses a non-negligible threat to human health. Exosomes derived from human adipose mesenchymal stem cells (ADSC-Exo) reduces visceral and cutaneous fibroses, but their role in OSF has received little attention. The aim of this study was to investigate the effects of ADSC-Exo on OSF and elucidate the mechanism. METHODS: In brief, ADSCs were extracted from adipose tissues and subjected to flow cytometry and induction culture. Fibroblasts were isolated from human buccal mucosa and subjected to immunofluorescence. Myofibroblasts were obtained from fibroblasts induced by arecoline and identified. Immunofluorescence assay confirmed that myofibroblasts could take up ADSC-Exo. The effects of ADSC-Exo on the proliferative and migratory capacities of myofibroblasts were examined using the Cell Counting Kit-8 and scratch assay. Real-time quantitative polymerase chain reaction (qPCR) was performed to evaluate mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad7, collagen type 1 (Col1), Col3, alpha smooth muscle actin (α-SMA), fibronectin, and vimentin. Western blotting was performed to detect phospho (p)-Smad2, Smad2, p-Smad2/3, Smad2/3, Smad7, Col1, Col3, α-SMA, fibronectin, and vimentin. Furthermore, the dual-luciferase reporter assay was performed to prove that miR-181a-5p in ADSC-Exo directly inhibited the expression of Smad2 mRNA to regulate the transforming growth factor beta (TGF-ß) pathway. We also performed qPCR and western blotting to verify the results. RESULTS: ADSC-Exo could promote the proliferation and migration of myofibroblasts, reduce the expressions of p-smad2, Smad2, p-smad2/3, Smad2/3, Col1, αSMA, fibronectin, and vimentin and elevated the levels of Smad7 and Col3. In addition, miR-181a-5p was highly expressed in ADSC-Exo and bound to the 3'-untranslated region of Smad2. ADSC-Exo enriched with miR-181a-5p reduced collagen production in myofibroblasts and modulated the TGF-ß pathway. CONCLUSIONS: ADSC-Exo promoted the proliferative and migratory capacities of myofibroblasts and inhibited collagen deposition and trans-differentiation of myofibroblasts in vitro. miR-181a-5p in exosomes targets Smad2 to regulate the TGF-ß pathway in myofibroblasts. ADSC-Exo perform antifibrotic actions through the miR-181a-5p/Smad2 axis and may be a promising clinical treatment for OSF.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Oral Submucosa , Humanos , Colágeno Tipo I/metabolismo , Exossomos/metabolismo , Fibronectinas/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/terapia , Fibrose Oral Submucosa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
16.
Front Endocrinol (Lausanne) ; 14: 1287789, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089603

RESUMO

Background: This study aimed to investigate the effects of a collagen endometrial patch (EM patch) loaded with adipose-derived mesenchymal stem cells (ADSCs) on endometrial regeneration in a rat model with thin endometrium. Materials and methods: Thin endometrium was induced in female rats and divided into treatment groups as outlined: control, group 1(G1), local injection of ADSCs into the uterus, group 2 (G2), an EM patch without ADSCs, group 3 (G3), and an EM patch loaded with ADSCs, group 4 (G4). The rats were euthanized at either two weeks or four weeks after modeling and treatment followed by histological and biochemical analyses to examine the regenerative effects on the injured endometrium. Results: Transplantation of the ADSC-loaded EM patch significantly promoted endometrial proliferation and increased the luminal epithelial area. Two weeks after treatment, the mean number of von Villebrand factor (vWF)+ or cluster of differentiation (CD) 31+-stained blood vessels was significantly higher in G4 than in G1 and G2. The mRNA and protein expression levels of TGF-ß and FGF2 were significantly upregulated in G4 compared to those in the control. G4 exhibited significantly increased LIF mRNA levels and immunoreactivity compared with the other groups at both two weeks and four weeks after treatment. Cell tracking after ADSCs treatment revealed the presence of a substantial number of ADSCs grafted in the uterine tissues of G4, whereas a low number of ADSCs that were focally clustered were present in G2. Conclusion: Transplantation of EM patches loaded with ADSCs resulted in the histological and biochemical restoration of an injured endometrium. The strategic integration of EM patches and ADSCs holds significant promise as an innovative therapeutic approach for effectively treating impaired endometrial conditions.


Assuntos
Células-Tronco Mesenquimais , Regeneração , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Endométrio/patologia , Colágeno/metabolismo , RNA Mensageiro/metabolismo
17.
J Med Invest ; 70(3.4): 343-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37940517

RESUMO

Generation of hepatocytes from human adipose-derived mesenchymal stem cells (hADSCs) could be a promising alternative source of human hepatocytes. However, mechanisms to differentiate hepatocytes from hADSCs are not fully elucidated. We have previously demonstrated that our three-step differentiation protocol with glycogen synthase kinase (GSK) 3 inhibitor was effective to improve hepatocyte functions. In this study, we investigated the activation of the nuclear factor erythroid-2 related factor 2 (Nrf2) on hADSCs undergoing differentiation to HLC (hepatocyte-like cells). Our three-step differentiation protocol was applied for 21 days (Step 1:day 1-6, Step2:day 6-11, Step3:day 11-21). Our results show that significant nuclear translocation of Nrf2 occurred from day 11 until the end of HLC differentiation. Nuclear translocation of Nrf2 and CYP3A4 activity in the GSK3 inhibitor-treated group was obviously higher than that in Activin A-treated groups at day 11. The maturation of HLCs was delayed in Nrf2-siRNA group compared to control group. Furthermore, CYP3A4 activity in Nrf2-siRNA group was decreased at the almost same level in Activin A-treated group. Nrf2 translocation might enhance the function of HLC and be a target for developing highly functional HLC. J. Med. Invest. 70 : 343-349, August, 2023.


Assuntos
Quinase 3 da Glicogênio Sintase , Fator 2 Relacionado a NF-E2 , Humanos , Fator 2 Relacionado a NF-E2/farmacologia , Quinase 3 da Glicogênio Sintase/farmacologia , Citocromo P-450 CYP3A/farmacologia , Hepatócitos , Diferenciação Celular/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
18.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003297

RESUMO

Lichen sclerosus (LS) is a chronic inflammatory dermatosis mostly localized in the genital area, characterized by vulvar alterations that can severely impact a patient's quality of life. Current treatment modalities often provide incomplete relief, and there is a need for innovative approaches to manage this condition effectively. Platelet-rich plasma (PRP) and adipose-derived stem cells (ADSCs) have emerged as potential regenerative therapies for LS, offering promising results in clinical practice. This comprehensive review explores the utilization of PRP and ADSC therapy in the treatment of genital LS, highlighting their mechanisms of action, safety profiles, and clinical outcomes. PRP is a blood product enriched in growth factors and cytokines, which promotes tissue regeneration, angiogenesis, and immune modulation. ADSC regenerative potential relies not only in their plasticity but also in the secretion of trophic factors, and modulation of the local immune response. Numerous studies have reported the safety of PRP and ADSC therapy for genital LS. Adverse events are minimal and typically involve mild, self-limiting symptoms, such as transient pain and swelling at the injection site. Long-term safety data are encouraging, with no significant concerns identified in the literature. PRP and ADSC therapy have demonstrated significant improvements in LS-related symptoms, including itching, burning, dyspareunia, and sexual function. Additionally, these therapies enable many patients to discontinue the routine use of topical corticosteroids. Several studies have explored the efficacy of combining PRP and ADSC therapy for LS. In combination, PRP and ADSCs seem to offer a synergistic approach to address the complex pathophysiology of LS, particularly in the early stages. The use of PRP and ADSC therapy for genital lichen sclerosus represents a promising and safe treatment modality. These regenerative approaches have shown significant improvements in LS-related symptoms, tissue trophism, and histological features. Combination therapy, which harnesses the synergistic effects of PRP and ADSCs, is emerging as a preferred option, especially in early-stage LS cases. Further research, including randomized controlled trials and long-term follow-up, is warranted to elucidate the full potential and mechanisms of PRP and ADSC therapy in the management of genital LS. These regenerative approaches hold great promise in enhancing the quality of life of individuals suffering from this challenging condition.


Assuntos
Líquen Escleroso e Atrófico , Plasma Rico em Plaquetas , Feminino , Humanos , Líquen Escleroso e Atrófico/tratamento farmacológico , Líquen Escleroso e Atrófico/metabolismo , Qualidade de Vida , Adipócitos , Células-Tronco , Plasma Rico em Plaquetas/metabolismo
19.
Regen Med ; 18(12): 907-911, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990874

RESUMO

Aim: Spinal cord injury (SCI) can cause severe disability. Several clinical trials of stem-cell based therapies are ongoing. We describe our experience of bone marrow mesenchymal stem cell (BMSC) therapy in a patient with complete SCI in the chronic stage. Case report: A 25-year-old man with complete SCI at T6 level presented with paraplegia for 5 years. We transplanted autologous BMSCs intramedullary. After 12 months follow-up, his Barthel index score was noticeably improved from severe to moderate dependency, and the sensation level improved from T7 to S5, but no improvement of motor function. Conclusion: Autologous BMSCs are potentially safe for patients with complete SCI in the chronic stage and may improve neurological function and quality of life.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Masculino , Humanos , Adulto , Qualidade de Vida , Traumatismos da Medula Espinal/terapia , Implantação do Embrião , Células da Medula Óssea , Medula Espinal
20.
Mol Med ; 29(1): 120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670256

RESUMO

BACKGROUND: Lumbar facet joint osteoarthritis (LFJ OA) is a common disease, and there is still a lack of effective disease-modifying therapies. Our aim was to determine the therapeutic effect of hypoxia-treated adipose mesenchymal stem cell (ADSC)-derived exosomes (Hypo-ADSC-Exos) on the protective effect against LFJ OA. METHODS: The protective effect of Hypo-ADSC-Exos against LFJ OA was examined in lumbar spinal instability (LSI)-induced LFJ OA models. Spinal pain behavioural assessments and CGRP (Calcitonin Gene-Related Peptide positive) immunofluorescence were evaluated. Cartilage degradation and subchondral bone remodelling were assessed by histological methods, immunohistochemistry, synchrotron radiation-Fourier transform infrared spectroscopy (SR-FTIR), and 3D X-ray microscope scanning. RESULTS: Hypoxia enhanced the protective effect of ADSC-Exos on LFJ OA. Specifically, tail vein injection of Hypo-ADSC-Exos protected articular cartilage from degradation, as demonstrated by lower FJ OA scores of articular cartilage and less proteoglycan loss in lumbar facet joint (LFJ) cartilage than in the ADSC-Exo group, and these parameters were significantly improved compared to those in the PBS group. In addition, the levels and distribution of collagen and proteoglycan in LFJ cartilage were increased in the Hypo-ADSC-Exo group compared to the ADSC-Exo or PBS group by SR-FTIR. Furthermore, Hypo-ADSC-Exos normalized uncoupled bone remodelling and aberrant H-type vessel formation in subchondral bone and effectively reduced symptomatic spinal pain caused by LFJ OA in mice compared with those in the ADSC-Exo or PBS group. CONCLUSIONS: Our results show that hypoxia is an effective method to improve the therapeutic effect of ADSC-Exos on ameliorating spinal pain and LFJ OA progression.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteoartrite , Articulação Zigapofisária , Animais , Camundongos , Obesidade , Hipóxia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...