Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Argent Microbiol ; 56(3): 241-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39089979

RESUMO

Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.


Assuntos
Chlorella vulgaris , Chlorella vulgaris/genética , Águas Residuárias/microbiologia , Argentina , Biodegradação Ambiental , Evolução Molecular Direcionada , Mutagênese , Clorofila A , Clorofila/análise , Peróxido de Hidrogênio/farmacologia
2.
Food Res Int ; 190: 114637, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945626

RESUMO

Although the industrial production of butanol has been carried out for decades by bacteria of the Clostridium species, recent studies have shown the use of the yeast Saccharomyces cerevisiae as a promising alternative. While the production of n-butanol by this yeast is still very far from its tolerability (up to 2% butanol), the improvement in the tolerance can lead to an increase in butanol production. The aim of the present work was to evaluate the adaptive capacity of the laboratory strain X2180-1B and the Brazilian ethanol-producing strain CAT-1 when submitted to two strategies of adaptive laboratory Evolution (ALE) in butanol. The strains were submitted, in parallel, to ALE with successive passages or with UV irradiation, using 1% butanol as selection pressure. Despite initially showing greater tolerance to butanol, the CAT-1 strain did not show great improvements after being submitted to ALE. Already the laboratory strain X2180-1B showed an incredible increase in butanol tolerance, starting from a condition of inability to grow in 1% butanol, to the capacity to grow in this same condition. With emphasis on the X2180_n100#28 isolated colony that presented the highest maximum specific growth rate among all isolated colonies, we believe that this colony has good potential to be used as a model yeast for understanding the mechanisms that involve tolerance to alcohols and other inhibitory compounds.


Assuntos
Butanóis , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Butanóis/metabolismo , Fermentação , Etanol/metabolismo , Etanol/farmacologia , 1-Butanol/metabolismo , Raios Ultravioleta , Adaptação Fisiológica
3.
Chemosphere ; 360: 142402, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777193

RESUMO

Three sequential batch reactors (SBR) were operated to evaluate salt addition's impact on granulation, performance, and biopolymer production in aerobic granular sludge (AGS) systems. System R1 was fed without adding salt (control); system R2 operated with saline pulses, i.e., one cycle with salt (2.5 g NaCl/L) addition followed by another without salt; and R3 received continuous supplementation of 2.5 g NaCl/L. The results indicated that the reactors supplemented with salt presented higher concentrations of mixed liquor volatile suspended solids (MLVSS) and better settleability than R1, showing that osmotic pressure contributed to biomass growth, accelerated granulation, and improved physical characteristics. The faster granulation occurred in R2, thus proving the beneficial effects of intermittent salt addition through alternating pulses. Salt addition did not impair the simultaneous removal of carbon, nitrogen, and phosphorus. In fact, R2 showed better carbon removals. In conclusion, continuous or intermittent (pulsed) supplementation of 2.5 g NaCl/L did not lead to increased production of extracellular polymeric substances (EPS) and alginate-like exopolymers (ALE). This outcome could be attributed to the low saline concentration employed, a higher food-to-microorganism (F/M) ratio observed in R1, and possibly greater endogenous consumption of biopolymers in the famine period in R2 and R3 due to the greater solids retention time (SRT). Therefore, this study brings important results that contribute to a better understanding of the effect of salt in continuous dosing or in pulses as a selection pressure strategy to accelerate granulation, as well as the behavior of the AGS systems for saline effluents.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Fósforo , Aerobiose , Biomassa , Nitrogênio , Biopolímeros , Carbono/metabolismo , Estresse Salino , Cloreto de Sódio
4.
Food Chem ; 435: 137640, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804728

RESUMO

Physicochemical parameters, microbial diversity using sequencing and amplicon, and metabolite concentrations from Ginger Bug and Ginger Beer were characterized. Furthermore, the sensory aspects of the beverage were determined. The longer ginger bug activation time (96 h) resulted in higher production of organic acids and alcohols, increased phenolic and volatile compounds concentration, greater microbial diversity, and increased lactic acid bacteria and yeasts. In the same way, the longer fermentation time (14 days) of ginger beer resulted in higher ethanol content, volatile compounds, and phenolic compounds, in addition to better sensory characteristics. Our results showed that ginger beer produced with ginger bug and fermented for 14 days showed better volatile and phenolic compound profiles, physicochemical parameters, microbial diversity, and sensory characteristics.


Assuntos
Microbiota , Zingiber officinale , Cerveja , Fermentação , Zingiber officinale/química , Fenóis/análise
5.
Chemosphere ; 311(Pt 1): 137006, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36330972

RESUMO

The influence of salt addition to stimulating biopolymers production in aerobic granular sludge (AGS) systems was evaluated. The control systems (R1: acetate and R2: propionate) initially obtained less accumulation of mixed liquor volatile suspended solids (MLVSS), indicating that the osmotic pressure in the salt-supplemented systems (R3: acetate and R4: propionate) contributed to biomass growth. However, the salt-supplemented systems collapsed between days 110 and 130 of operation. R3 and R4 showed better performance regarding nutrients removal due to the greater abundance of nitrifying and denitrifying bacteria and phosphate-accumulating organisms. Salt also contributed to the higher production of biopolymers such as alginate-like exopolymers (ALE) per gram of volatile suspended solids (VSS) (R1: 397 mgALE∙gVSS-1, R2: 140 mgALE∙gVSS-1, R3: 483 mgALE∙gVSS-1, R4: 311 mgALE∙gVSS-1). Amino acids like tyrosine and tryptophan were better identified in extracellular polymeric substances extract from salt-operated reactors. This study brings important results in the context of resource recovery by treating saline effluents.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Propionatos , Biopolímeros , Cloreto de Sódio , Aerobiose
6.
Bioresour Technol ; 357: 127355, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609753

RESUMO

This study evaluated the influence of carbon sources on alginate-like exopolymers (ALE) and tryptophan (Trp) biosynthesis in the aerobic granular sludge (AGS). With acetate, the highest biopolymers levels, per gram of volatile suspended solids (VSS) (418.7 mgALE∙g-1 and 4.1 mgTrp∙gVSS-1), were found likely due to biomass loss throughout the operation, which resulted in lower sludge age (4-7 days) and shorter famine period. During granulation, encouraging results on ALE production were obtained with propionate (>250 mgALE∙gVSS-1), significantly higher than those found with glycerol, glucose, and sucrose. Regarding tryptophan production, propionate and glycerol proved to be good substrates, although the content was still lower than acetate (1.6 mgTrp∙gVSS-1). Granules fed with glucose showed the worst results compared to the other substrates (38.5 mgALE∙VSS-1 and 0.6 mgTrp∙gVSS-1) due to the filamentous microorganisms' abundance found. Therefore, this study provides insights to value the production of compounds of industrial interest in AGS systems.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Alginatos , Reatores Biológicos , Carbono , Glucose , Glicerol , Propionatos , Esgotos/química , Triptofano , Eliminação de Resíduos Líquidos/métodos
7.
Molecules ; 27(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35208981

RESUMO

Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.


Assuntos
Cerveja , Colite , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pós , Dodecilsulfato de Sódio/toxicidade
8.
Chemosphere ; 274: 129881, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33582539

RESUMO

Lately, wastewater treatment plants are much often being designed as wastewater-resource factories inserted in circular cities. Among biological treatment technologies, aerobic granular sludge (AGS), considered an evolution of activated sludge (AS), has received great attention regarding its resource recovery potential. This review presents the state-of-the-art concerning the influence of operational parameters on the recovery of alginate-like exopolysaccharides (ALE), tryptophan, phosphorus, and polyhydroxyalkanoates (PHA) from AGS systems. The carbon to nitrogen ratio was identified as a parameter that plays an important role for the optimal production of ALE, tryptophan, and PHA. The sludge retention time effect is more pronounced for the production of ALE and tryptophan. Additionally, salinity levels in the bioreactors can potentially be manipulated to increase ALE and phosphorus yields simultaneously. Some existing knowledge gaps in the scientific literature concerning the recovery of these resources from AGS were also identified. Regarding industrial applications, tryptophan has the longest way to go. On the other hand, ALE production/recovery could be considered the most mature process if we take into account that existing alternatives for phosphorus and PHA production/recovery are optimized for activated sludge rather than granular sludge. Consequently, to maintain the same effectiveness, these processes likely could not be applied to AGS without undergoing some modification. Therefore, investigating to what extent these adaptations are necessary and designing alternatives is essential.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Nitrogênio , Fósforo , Águas Residuárias
9.
Bioprocess Biosyst Eng ; 44(2): 259-270, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32889571

RESUMO

The engineering and microbiological aspects involved in the production of alginate-like exopolysaccharides (ALE) and tryptophan (TRY) in aerobic granular sludge systems were evaluated. The inclusion of short anoxic phase (A/O/A cycle-anaerobic, oxic, and anoxic phase) and the control of sludge retention time (SRT ≈ 10 days) proved to be an important strategy to increase the content of these bioproducts in granules. The substrate concentration also has a relevant impact on the production of ALE and TRY. The results of the microbiological analysis showed that slow-growing heterotrophic microbial groups (i.e., PAOs and GAOs) might be associated with the production of ALE, and the EPS-producing fermentative bacteria might be associated with the TRY production. The preliminary economic evaluation indicated the potential of ALE recovery in AGS systems in decreasing the OPEX (operational expenditure) of the treatment, especially for larger sewage treatment plants or industrial wastewaters with a high organic load.


Assuntos
Alginatos/metabolismo , Reatores Biológicos , Esgotos/microbiologia , Triptofano/biossíntese , Aerobiose
10.
Artigo em Inglês | MEDLINE | ID: mdl-31622171

RESUMO

Carbonyl compounds and furan derivatives may form adducts with DNA and cause oxidative stress to human cells, which establishes the carcinogenic potential of these compounds. The occurrence of these compounds may vary according to the processing characteristics of the beer. The objective of this study was, for the first time, to investigate the free forms of target carbonyl compounds [acetaldehyde, acrolein, ethyl carbamate (EC) and formaldehyde] and furan derivatives [furfural and furfuryl alcohol (FA)] during the brewing stages of ale and lager craft beers. Samples were evaluated using headspace-solid phase microextraction and gas chromatography with mass spectrometric detection in selected ion monitoring mode (HS-SPME-GC/MS-SIM). Acetaldehyde, acrolein, formaldehyde and furfuryl alcohol were found in all brewing stages of both beer types, while EC and furfural concentrations were below the LOD and LOQ of the method (0.1 and 0.01 µg L-1, respectively). Boiling and fermentation of ale brewing seem to be important steps for the formation of acrolein and acetaldehyde, respectively, while boiling resulted in an increase of FA in both types of beer. Conversely, pasteurisation and maturation reduced the levels of these compounds in both types of beer. An increase in concentration of acrolein has not been verified in lager brew probably due to the difference in boiling time between these two types of beer (60 and 90 min for ale and lager, respectively).


Assuntos
Cerveja/análise , Análise de Alimentos , Contaminação de Alimentos/análise , Acetaldeído/efeitos adversos , Acetaldeído/análise , Acroleína/efeitos adversos , Acroleína/análise , Cerveja/efeitos adversos , Fermentação , Formaldeído/efeitos adversos , Formaldeído/análise , Furanos/efeitos adversos , Furanos/análise , Humanos , Uretana/efeitos adversos , Uretana/análise
11.
Int J Food Microbiol ; 190: 97-104, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25209588

RESUMO

In cachaça production, the use of yeast cells as starters with predictable flocculation behavior facilitates the cell recovery at the end of each fermentation cycle. Therefore, the aim of this work was to explain the behavior of cachaça yeast strains in fermentation vats containing sugarcane through the determination of biochemical and molecular parameters associated with flocculation phenotypes. By analyzing thirteen cachaça yeast strains isolated from different distilleries, our results demonstrated that neither classic biochemical measurements (e.g., percentage of flocculation, EDTA sensitivity, cell surface hydrophobicity, and sugar residues on the cell wall) nor modern molecular approaches, such as polymerase chain reaction (PCR) and real-time PCR (q-PCR), were sufficient to distinctly classify the cachaça yeast strains according to their flocculation behavior. It seems that flocculation is indeed a strain-specific phenomenon that is difficult to explain and/or categorize by the available methodologies.


Assuntos
Fermentação , Microbiologia de Alimentos , Saccharomyces cerevisiae/fisiologia , Floculação , Indústria Alimentícia , Genes Fúngicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA