Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.692
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39231842

RESUMO

Stockpiles containing sulfide minerals are subject to oxidation reactions when exposed to atmospheric conditions, which can result in the formation of acid mine drainage (AMD). Reactive waste rock has limited re-use potential due to the contamination risk associated with the generated drainage water. The re-use of reactive waste rock could lead to a significant reduction in the volume of waste rock as it mitigates the environmental impact of mine waste deposition. Acid mine drainage generation rate depends on sulfide weathering kinetics which are controlled by many parameters such as the mineralogy and the particle size. Fine fractions of waste rock have higher specific surface areas and degree of liberation of sulfides, resulting in greater reactivity than the coarse fractions. The objective of this research was therefore to evaluate the potential of re-use by controlling particle size using the sieving method. Two different potentially acid-generating waste rocks were divided into six fractions and subjected to both static and kinetic tests. Prediction of the geochemical behavior using static test did not consider the liberation of the minerals, and the long-term prediction was therefore overestimated. Results of the kinetic columns showed there was less oxidation of the sulfide minerals in the coarse fractions than in the fine fractions. Additionally, the distribution of sulfidic minerals and neutralizing minerals with particle size is influencing the potential of the re-use of the reactive waste rock.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39243285

RESUMO

OBJECTIVE: To evaluate changes in choroidal thickness in presbyopes, when reading with regular glasses versus choroidal control glasses, in patients with or without Age-Related Macular Degeneration (AMD). METHODS: This was a pilot study on short-term axial length (AL) in 33 eyes of 24 presbyopic patients aged 60 to 80 years, assigned to two age-matched groups, with or without AMD. About them, changes in choroidal thickness were evaluated with ocular biometry through indirect measurements of axial length at baseline, after 20' of reading with conventional lenses, and after another 20' of reading with peripheral hyperopic defocus glasses. The differences in axial length between the three different times were analyzed. RESULTS: In presbyopes without AMD there was a significant axial length shortening of -13.44 microns in the first conventional reading period, which was reversed by 90% with hyperopic defocus lenses, recovering + 12.11 microns by axial lengthening (choroidal thinning, p = 0.03). In patients with AMD, axial shortening was significantly greater than controls, -23.86 microns with conventional lenses (p < 0.001) and they, also increased their axial length with defocus, although this response was smaller in proportion (+ 15.52 microns). CONCLUSION: Reading with positive lenses produces myopic defocus and choroidal thickening in presbyopes with and without AMD but was significantly greater in the latter. Glasses with Choroidal Control Technology reduced thickening during reading. KEY MESSAGES: What is known • Presbyopia spectacles for near produce myopic defocus and choroidal thickening. What is new • There are differences in choroidal thickening during reading between normal subjects and those with age related macular degeneration. • Spectacles with Defocus Choroidal Control Technology reduce choroidal thickening during reading in presbyopes.

3.
Adv Exp Med Biol ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39259423

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of visual loss in older patients. No effective drug is available for this pathology, but studies about therapy with stem cells replacing the damaged retinal cells with retinal pigment epithelium (RPE) were described. The documentation of AMD progression and the response to stem cell therapy have been performed by optical coherence tomography, microperimetry, and other diagnostic technologies.This chapter reports a clinical review of the most important clinical trials and protocols regarding the use of stem cells in AMD.

4.
Exp Eye Res ; 247: 110028, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128667

RESUMO

Age-related macular degeneration (AMD) is one of the leading causes of vision loss in the elderly. This disease involves oxidative stress burden in the retina leading to death of retinal pigment epithelial (RPE) cells and photoreceptors. The retina is susceptible to oxidative stress, in part due to high metabolic activity and high concentration of polyunsaturated fatty acids that undergo lipid peroxidation chain reactions. Antioxidant enzymes exist in the retina to combat this stress, including glutathione peroxidase 4 (GPX4). GPX4 specifically reduces oxidized lipids, protecting against lipid peroxidation-induced oxidative stress, which is noted in dry AMD. We hypothesize that Gpx4 knockout within the RPE will result in an environment of chronic oxidative stress yielding degeneration akin to AMD. C57BL/6J mice with a floxed Gpx4 gene were mated with Rpe65Cre/ER mice. Offspring containing Rpe65Cre ± alleles and either Gpx4 WT or Gpx4 fl/fl alleles were administered tamoxifen to induce Gpx4 knockout in Gpx4 fl/fl mice. At sequential timepoints, retinal phenotypes were assessed via in vivo imaging utilizing confocal scanning laser ophthalmoscopy and optical coherence tomography (OCT), and visual function was probed by electroretinography. Retinas were studied post-mortem by immunohistochemical analyses, electron microscopy, plastic sectioning, and quantitative polymerase chain reaction and Western analyses. The RPE-specific Gpx4 knockout model was validated via Western analysis indicating diminished GPX4 protein only within the RPE and not the neural retina. Following Gpx4 knockout, RPE cells became dysfunctional and died, with significant cell loss occurring 2 weeks post-knockout. Progressive thinning of the photoreceptor layer followed RPE degeneration and was accompanied by loss of visual function. OCT and light microscopy showed hyperreflective foci and enlarged, pigmented cells in and above the RPE layer. Electron microscopy revealed decreased mitochondrial cristae and loss of basal and apical RPE ultrastructure. Finally, there was increased carboxyethylpyrrole staining, indicating oxidation of docosahexaenoic acid, and increased levels of mRNAs encoding oxidative stress-associated genes in the RPE and photoreceptors. Overall, we show that RPE-localized GPX4 is necessary for the health of the RPE and outer retina, and that knockout recapitulates phenotypes of dry AMD.

5.
Front Immunol ; 15: 1421175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091492

RESUMO

Age-related macular degeneration (AMD), a prevalent and progressive degenerative disease of the macula, is the leading cause of blindness in elderly individuals in developed countries. The advanced stages include neovascular AMD (nAMD), characterized by choroidal neovascularization (CNV), leading to subretinal fibrosis and permanent vision loss. Despite the efficacy of anti-vascular endothelial growth factor (VEGF) therapy in stabilizing or improving vision in nAMD, the development of subretinal fibrosis following CNV remains a significant concern. In this review, we explore multifaceted aspects of subretinal fibrosis in nAMD, focusing on its clinical manifestations, risk factors, and underlying pathophysiology. We also outline the potential sources of myofibroblast precursors and inflammatory mechanisms underlying their recruitment and transdifferentiation. Special attention is given to the potential role of mast cells in CNV and subretinal fibrosis, with a focus on putative mast cell mediators, tryptase and granzyme B. We summarize our findings on the role of GzmB in CNV and speculate how GzmB may be involved in the pathological transition from CNV to subretinal fibrosis in nAMD. Finally, we discuss the advantages and drawbacks of animal models of subretinal fibrosis and pinpoint potential therapeutic targets for subretinal fibrosis.


Assuntos
Fibrose , Granzimas , Degeneração Macular , Humanos , Animais , Degeneração Macular/patologia , Degeneração Macular/metabolismo , Degeneração Macular/etiologia , Granzimas/metabolismo , Retina/patologia , Retina/metabolismo , Retina/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/metabolismo
6.
J Clin Med ; 13(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39124583

RESUMO

Purpose: To determine the recurrence rate of neovascular age-related macular degeneration (nAMD) during a 5-year period after the suspension of anti-vascular endothelial growth factor (anti-VEGF) treatments. Methods: Thirty-four eyes of 34 nAMD patients who met the inclusion criteria and were treated by anti-VEGF drugs were studied. All met the treatment suspension criteria and were followed for 5 years after the suspension of the anti-VEGF treatment. Patients with a recurrence within one year were placed in Group A, and patients with a recurrence between 1 and 5 years were placed in Group B. The rate and time of a recurrence were analyzed using the Kaplan-Meier method. We also examined whether there were differences in the baseline factors of age, sex, subtype, treatment period, and treatment interval between Groups A and B. Results: Twenty-five of 34 eyes (73.5%) had a recurrence within 5 years of stopping the anti-VEGF treatments. Thirteen (52.0%) of the 25 eyes had a recurrence within 1 year, 4 (16.0%) eyes between 1 and 2 years, 4 (16.0%) eyes between 2 and 3 years, 2 (8%) between 3 and 4 years, and 2 eyes (8%) between 4 and 5 years. The baseline factors were not significantly different between Groups A and B. Conclusions: The results showed that the recurrence rate was highest within one year after the suspension of the anti-VEGF treatments, with a number of recurrences one year after the suspension. Clinicians should remember that nAMD may recur several years after the suspension of anti-VEGF treatments.

7.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124926

RESUMO

Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box-Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity.

8.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39125641

RESUMO

Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are common retinal diseases responsible for most blindness in working-age and elderly populations. Oxidative stress and mitochondrial dysfunction play roles in these pathogenesis, and new therapies counteracting these contributors could be of great interest. Some molecules, like coenzyme Q10 (CoQ10), are considered beneficial to maintain mitochondrial homeostasis and contribute to the prevention of cellular apoptosis. We investigated the impact of adding CoQ10 (Q) to a nutritional antioxidant complex (Nutrof Total®; N) on the mitochondrial status and apoptosis in an in vitro hydrogen peroxide (H2O2)-induced oxidative stress model in human retinal pigment epithelium (RPE) cells. H2O2 significantly increased 8-OHdG levels (p < 0.05), caspase-3 (p < 0.0001) and TUNEL intensity (p < 0.01), and RANTES (p < 0.05), caspase-1 (p < 0.05), superoxide (p < 0.05), and DRP-1 (p < 0.05) levels, and also decreased IL1ß, SOD2, and CAT gene expression (p < 0.05) vs. control. Remarkably, Q showed a significant recovery in IL1ß gene expression, TUNEL, TNFα, caspase-1, and JC-1 (p < 0.05) vs. H2O2, and NQ showed a synergist effect in caspase-3 (p < 0.01), TUNEL (p < 0.0001), mtDNA, and DRP-1 (p < 0.05). Our results showed that CoQ10 supplementation is effective in restoring/preventing apoptosis and mitochondrial stress-related damage, suggesting that it could be a valid strategy in degenerative processes such as AMD or DR.


Assuntos
Apoptose , Peróxido de Hidrogênio , Estresse Oxidativo , Epitélio Pigmentado da Retina , Ubiquinona , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Antioxidantes/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Suplementos Nutricionais
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125877

RESUMO

Philadelphia-chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is characterized by reciprocal chromosomal translocation between chromosome 9 and 22, leading to the expression of constitutively active oncogenic BCR-ABL1 fusion protein. CXC chemokine receptor 4 (CXCR4) is essential for the survival of BCR-ABL1-transformed mouse pre-B cells, as the deletion of CXCR4 induces death in these cells. To investigate whether CXCR4 inhibition also effectively blocks BCR-ABL1-transformed cell growth in vitro, in this study, we explored an array of peptide-based inhibitors of CXCR4. The inhibitors were optimized derivatives of EPI-X4, an endogenous peptide antagonist of CXCR4. We observed that among all the candidates, EPI-X4 JM#170 (referred to as JM#170) effectively induced cell death in BCR-ABL1-transformed mouse B cells but had little effect on untransformed wild-type B cells. Importantly, AMD3100, a small molecule inhibitor of CXCR4, did not show this effect. Treatment with JM#170 induced transient JNK phosphorylation in BCR-ABL1-transformed cells, which in turn activated the intrinsic apoptotic pathway by inducing cJun, Bim, and Bax gene expressions. Combinatorial treatment of JM#170 with ABL1 kinase inhibitor Imatinib exerted a stronger killing effect on BCR-ABL1-transformed cells even at a lower dose of Imatinib. Surprisingly, JM#170 actively killed Sup-B15 cells, a BCR-ABL1+ human ALL cell line, but had no effect on the BCR-ABL1- 697 cell line. This suggests that the inhibitory effect of JM#170 is specific for BCR-ABL1+ ALL. Taken together, JM#170 emerges as a potent novel drug against Ph+ ALL.


Assuntos
Proteínas de Fusão bcr-abl , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/metabolismo , Animais , Camundongos , Humanos , Peptídeos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Linhagem Celular Tumoral , Cromossomo Filadélfia/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
10.
Surv Ophthalmol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39097172

RESUMO

We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1ß (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-ß were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-ß suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.

11.
Curr Eye Res ; : 1-5, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155542

RESUMO

PURPOSE: Specific genetic factors might serve as markers for risk stratification of AMD progression, but their association with key features of AMD has not been fully elucidated. Thus, we investigated the association between overall and pathway-specific genetic risk scores (GRS) and lead loci (ARMS2, CFH) with AMD stages and features of high-risk nonlate AMD, including reticular pseudodrusen (RPD) and large drusen area (LDA). METHODS: We performed a cross-sectional analysis of data from the Rhineland Study, a population-based study in Bonn, Germany. We included 4016 individuals aged 50 years and older of European descent. GRS and pathway-specific subscores were constructed based on a large genome-wide association study of AMD. Subscores were generated based on gene-pathways associations (complement, extracellular matrix remodeling (ECM) and lipid metabolism). Associations were assessed using logistic and multinomial regression. RESULTS: The mean age of participants was 63.36 years and 1813 (45.1%) were men. The GRS was positive in 48.1% of individuals and increased, but did not fully overlap, across AMD stages. Pathway-specific subscores increased across AMD stages except for the ECM subscore, which only showed a trend for increasing in late AMD. Increasing overall GRS was associated with RPD and LDA (OR [95%CI] for RPD: 1.70 [1.33-2.15], for LDA: 1.64 [1.29-2.07]) among individuals with AMD. Similarly, higher complement and ECM subscores was associated with RPD, while for LDA, only an association with complement subscore was observed. CONCLUSIONS: In a population-based setting, we confirmed higher genetic risk to be associated with more severe AMD and identified associations with high-risk features of intermediate AMD. Conjoint analyses suggested that high-risk features and late AMD might be differentially associated with genetic architecture in AMD, such as ECM remodeling. Incorporation of genetic information such as GRSs might improve AMD risk prediction strategies.

12.
Autophagy ; : 1-2, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39133039

RESUMO

Dysregulated macroautophagy/autophagy is one of the hallmarks of aging and has also been linked to higher incidence of several age-associated diseases such as age-related macular degeneration (AMD). The main cell type affected in AMD is the retinal pigment epithelium (RPE), and this disease can lead to central vision loss. Despite affecting around 8.7% of the population between 45-85 years, its etiopathogenesis remains unknown. In our recent manuscript using the pharmacological sodium iodate (SI) model of AMD we identified severe lysosomal membrane permeabilization (LMP) in the RPE, that leads to autophagy flux blockage and proteostasis defects. Treatment with the natural compound urolithin A (UA) reduces RPE cell death and alleviates vision loss, concurrent with full autophagy restoration. While UA was initially described as a specific mitophagy inducer, we now show that it is also able to promote SQSTM1/p62-dependent lysophagy in the context of lysosomal damage and LMP. Genetic downregulation of SQSTM1/p62 fully abolishes the effect of UA on lysophagy while mitophagy stimulation remains unaffected. In summary, these findings highlight the wide range of pathways modulated by UA and its potential implementation in the management of AMD and other diseases involving lysosomal damage.

13.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143171

RESUMO

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Glicólise/efeitos dos fármacos , Humanos , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Impedância Elétrica , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
14.
Artigo em Inglês | MEDLINE | ID: mdl-39088376

RESUMO

Background: Familial chylomicronemia syndrome (FCS) is a rare inherited condition due to lipoprotein lipase deficiency, characterized by hyperchylomicronemia and severe hypertriglyceridemia. Diagnosis is often delayed, thus increasing the risk of acute pancreatitis and hospitalization. Hypertriglyceridemia is a common finding in patients with type 2 diabetes (T2D), who may harbor FCS among the most severe forms. Aim of the Study: We investigated the prevalence and clinical characteristics associated with severe hypertriglyceridemia in a range indicative of FCS, in a large population of subjects with T2D. Methods: Within the large population of the AMD Annals Initiative, patients with T2D with a lipid profile suggestive of FCS [triglycerides >880 mg/dL and/or high-density lipoprotein (HDL)-cholesterol <22 mg/dL or non-HDL-cholesterol ≤70 mg/dL] and their clinical features have been identified. Results: Overall, 8592 patients had triglyceride values >880 mg/dL in a single examination, 613 in two examinations, and 34 in three or more measurements. Patients with high triglyceride levels were mostly male (80%), with a relatively young age (54 years), short duration of diabetes (6.3 years), and elevated hemoglobin A1c (HbA1c) levels (9.4%). By stratifying this group of patients according to the severity of hypertriglyceridemia, more severe hypertriglyceridemia (triglyceride levels ≥2000 mg/dL) was associated with an even younger age (52 vs. 54 years), even higher mean HbA1c values (10.0% vs. 9.4%), and significantly higher HDL-cholesterol levels (37.9 vs. 32.4 mg/dL; P < 0.0001). Patients with persistently elevated triglyceride levels (n = 34), on three measurements, had a younger age; lower body mass index, HbA1c, and HDL-cholesterol levels; more frequent use of fibrates and insulin; and a higher prevalence of major cardiovascular events. Conclusions: Severe hypertriglyceridemia is a frequent condition in outpatients with T2D participating in the AMD Annals Initiative, and it is associated with male sex, young age, short disease duration, and a worse glycemic profile. Among patients with persistent severe hypertriglyceridemia, hidden FCS may be present.

15.
Sci Rep ; 14(1): 19285, 2024 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164445

RESUMO

Age-related macular degeneration (AMD) and diabetic macular edema (DME) are significant causes of blindness worldwide. The prevalence of these diseases is steadily increasing due to population aging. Therefore, early diagnosis and prevention are crucial for effective treatment. Classification of Macular Degeneration OCT Images is a widely used method for assessing retinal lesions. However, there are two main challenges in OCT image classification: incomplete image feature extraction and lack of prominence in important positional features. To address these challenges, we proposed a deep learning neural network model called MSA-Net, which incorporates our proposed multi-scale architecture and spatial attention mechanism. Our multi-scale architecture is based on depthwise separable convolution, which ensures comprehensive feature extraction from multiple scales while minimizing the growth of model parameters. The spatial attention mechanism is aim to highlight the important positional features in the images, which emphasizes the representation of macular region features in OCT images. We test MSA-NET on the NEH dataset and the UCSD dataset, performing three-class (CNV, DURSEN, and NORMAL) and four-class (CNV, DURSEN, DME, and NORMAL) classification tasks. On the NEH dataset, the accuracy, sensitivity, and specificity are 98.1%, 97.9%, and 98.0%, respectively. After fine-tuning on the UCSD dataset, the accuracy, sensitivity, and specificity are 96.7%, 96.7%, and 98.9%, respectively. Experimental results demonstrate the excellent classification performance and generalization ability of our model compared to previous models and recent well-known OCT classification models, establishing it as a highly competitive intelligence classification approach in the field of macular degeneration.


Assuntos
Aprendizado Profundo , Degeneração Macular , Redes Neurais de Computação , Tomografia de Coerência Óptica , Humanos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/classificação , Degeneração Macular/patologia , Tomografia de Coerência Óptica/métodos , Edema Macular/diagnóstico por imagem , Edema Macular/classificação , Edema Macular/patologia , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/classificação , Retinopatia Diabética/patologia , Retinopatia Diabética/diagnóstico , Processamento de Imagem Assistida por Computador/métodos
16.
Artigo em Inglês | MEDLINE | ID: mdl-39174817

RESUMO

PURPOSE: Incidence and risk factors of fellow eye wet conversion in unilateral neovascular age-related macular degeneration (nAMD) over 15-years follow-up. METHODS: This retrospective study reviewed 593 unilateral nAMD patients with a minimum of five years up to 15 years of follow-up. The demographic data, visual acuity, fellow eye nAMD conversion rate, and the number of anti-vascular endothelial growth factor (anti-VEGF) injections in the primary eye were evaluated. Also, the nAMD-converted fellow eyes were divided into two groups based on the time of conversion (less and more than two years from the first injection in the primary eye). Based on the data types, the T-test, Chi-square, and Mann-Whitney U test were used to analyze. RESULTS: The total cases were 593 patients, and 248 eyes (41.82%) converted to nAMD in the mean interval of 34.92 ± 30.62 months. The males exhibited a predisposition to wet conversion at 2.54 years earlier than their female counterparts (P = 0.025). In all the converted fellow eyes, the mean age was 2.3 years higher at presentation in the group who converted within two years of follow-up in compared to eyes that converted after two years (79.82 ± 8.64 vs 77.51 ± 8.5 years, P = 0.035). Additionally, eyes converting within two years had a mean baseline LogMAR visual acuity of 0.44 ± 0.47, compared to 0.32 ± 0.41 for conversions after two years (P = 0.014). CONCLUSION: This study reported that males showed a predisposition to fellow eye nAMD conversion at an earlier age. Additionally, there was a trend of faster fellow eye nAMD conversion in individuals with higher age and lower baseline visual acuity. KEY MESSAGES: What is known • Certain risk factors may make the fellow eye of neovascular age-related macular degeneration (nAMD) more likely to progress to wet conversion. • Identifying these risk factors for fellow eye wet conversion can help prevent it, potentially preserving the patient's vision quality for a longer duration. • The studies on the incidence of wet conversion in the fellow eye have yielded controversial results. What is new • During the 15-year follow-up period, nearly half (47.58%) of the fellow eyes that underwent wet conversion did so within the initial two years following the wet conversion of the first eye. • Males showed a predisposition to fellow eye nAMD conversion at an earlier age. • There was a trend of faster fellow eye nAMD conversion in individuals with higher age and lower baseline visual acuity.

17.
Free Radic Biol Med ; 224: 103-116, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39173893

RESUMO

Age-related macular degeneration (AMD), the leading cause of irreversible blindness in the elderly, is primarily characterized by the degeneration of the retinal pigment epithelium (RPE). However, effective therapeutic options for dry AMD are currently lacking, necessitating further exploration into preventive and pharmaceutical interventions. This study aimed to investigate the protective effects of gastrodin on RPE cells exposed to oxidative stress. We constructed an in vitro oxidative stress model of 4-hydroxynonenal (4-HNE) and performed RNA-seq, and demonstrated the protective effect of gastrodin through mouse experiments. Our findings reveal that gastrodin can inhibit 4-HNE-induced oxidative stress, effectively improving the mitochondrial and lysosomal dysfunction of RPE cells. We further elucidated that gastrodin promotes autophagy and phagocytosis through activating the PPARα-TFEB/CD36 signaling pathway. Interestingly, these outcomes were corroborated in a mouse model, in which gastrodin maintained retinal integrity and reduced RPE disorganization and degeneration under oxidative stress. The accumulation of LC3B and SQSTM1 in mouse RPE-choroid was also reduced. Moreover, activating PPARα and downstream pathways to restore autophagy and phagocytosis, thereby countering RPE injury from oxidative stress. In conclusion, this study demonstrated that gastrodin maintains the normal function of RPE cells by reducing oxidative stress, enhancing their phagocytic function, and restoring the level of autophagic flow. These findings suggest that gastrodin is a novel formulation with potential applications in the development of AMD disease.

18.
Ophthalmol Sci ; 4(6): 100543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139544

RESUMO

Purpose: We introduce a deep learning-based biomarker proposal system for the purpose of accelerating biomarker discovery in age-related macular degeneration (AMD). Design: Retrospective analysis of a large data set of retinal OCT images. Participants: A total of 3456 adults aged between 51 and 102 years whose OCT images were collected under the PINNACLE project. Methods: Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first training a neural network using self-supervised contrastive learning to discover, without any clinical annotations, features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially inform new biomarker candidates. Main Outcome Measures: We checked if each cluster showed clear features comprehensible to retinal specialists, if they related to AMD, and how many described established biomarkers used in grading systems as opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-stage wet and dry AMD against an established clinical grading system and a demographic baseline model. Results: Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading systems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intraretinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading systems in prognostic value. Conclusions: Using self-supervised deep learning, we were able to automatically propose AMD biomarkers going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic biomarkers. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

19.
Front Mol Biosci ; 11: 1341727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193219

RESUMO

Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.

20.
Front Mol Biosci ; 11: 1403844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39193222

RESUMO

Introduction: Multifactorial Eye disorders are a significant public health concern and have a huge impact on quality of life. The pathophysiological mechanisms underlying these eye disorders were not completely understood since functional and low-throughput biological tests were used. By identifying biomarkers linked to eye disorders, metabolomics enables early identification, tracking of the course of the disease, and personalized treatment. Methods: The electronic databases of PubMed, Scopus, PsycINFO, and Web of Science were searched for research related to Age-Related macular degeneration (AMD), glaucoma, myopia, and diabetic retinopathy (DR). The search was conducted in August 2023. The number of cases and controls, the study's design, the analytical methods used, and the results of the metabolomics analysis were all extracted. Using the QUADOMICS tool, the quality of the studies included was evaluated, and metabolic pathways were examined for distinct metabolic profiles. We used MetaboAnalyst 5.0 to undertake pathway analysis of differential metabolites. Results: Metabolomics studies included in this review consisted of 36 human studies (5 Age-related macular degeneration, 10 Glaucoma, 13 Diabetic retinopathy, and 8 Myopia). The most networked metabolites in AMD include glycine and adenosine monophosphate, while methionine, lysine, alanine, glyoxylic acid, and cysteine were identified in glaucoma. Furthermore, in myopia, glycerol, glutamic acid, pyruvic acid, glycine, cysteine, and oxoglutaric acid constituted significant metabolites, while glycerol, glutamic acid, lysine, citric acid, alanine, and serotonin are highly networked metabolites in cases of diabetic retinopathy. The common top metabolic pathways significantly enriched and associated with AMD, glaucoma, DR, and myopia were arginine and proline metabolism, methionine metabolism, glycine and serine metabolism, urea cycle metabolism, and purine metabolism. Conclusion: This review recapitulates potential metabolic biomarkers, networks and pathways in AMD, glaucoma, DR, and myopia, providing new clues to elucidate disease mechanisms and therapeutic targets. The emergence of advanced metabolomics techniques has significantly enhanced the capability of metabolic profiling and provides novel perspectives on the metabolism and underlying pathogenesis of these multifactorial eye conditions. The advancement of metabolomics is anticipated to foster a deeper comprehension of disease etiology, facilitate the identification of novel therapeutic targets, and usher in an era of personalized medicine in eye research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA